The Mean Median Map

Miroslav Bonchev Bonchev

May 4, 2011

MSci Project

Queen Mary, University of London

Student #: 075039325

Contact: miro@mbbsoftware.com
ah07278@qmul.ac.uk (until end of June 2011)
http://www.mbbsoftware.com

Abstract: The mean median map is a recursive function with complex behaviour. The paper explains the nature of
the function. It also presents a new numeric library for arbitrary large integer, arbitrary precise rational numbers
and irrational numbers created for this investigation. The paper introduces the Object Specialization Model for
first time, which although created previously was used in the software and hence required explanation. The Object
Specialization Model adds to the abstraction of the model of Object Oriented programming enhancing it and making
software development safer and faster.

(© Copyright 2011 by Miroslav Bonchev Bonchev. All rights reserved.

Contents

I Introduction

II Background and Conjectures

2.1. Definition of the problem

2.2. Conjectures

ITIT Results

IV Software

4.1 Object Specialization Model

4.2 Proper Numbers Library
4.2.1. The Integer Class o 0 i e e
4.2.2. The Rational Class Template. o 0L e

4.2.3. The Quadratic Irrational Template Class

4.3. The Mean Meadin Map Application

4.4. Matlab Resources

4.5. Other Classes and Resources

V Conclusion

27

27

36
36
53

61

74

92

93

94

© N o W=

— = = e e
- = o

© 2 N o W=

—_
- O

List Of Figures

Start Value vs. Halt Value for sequences with starting sets {0, z, 1}, # = 0.5 + 55t55n, 0 <n < 10000, n € N

Start Value vs. Iteration Count Until Halt for sequences with starting sets {0, =, 1}, = = 0.5 + 555557, n = 1..10000.

Zoom in on the interval 0.514 - 0.515 with starting sets {0, =, 1}, = = 0.514 + 155055057 0 < n < 10000, n € N.
Plot of sequences until the halt, for starting set {0, 0.5(2180), 1}.

Halt Kernel forming for sequence with starting set {0, 0.7, 1}.

Data - final iteration - produced by the software for sequence with starting set {0, 0.7, 1}.

Plot of sequences until they halt. All over 20,000 experiments yield similar results.

Class diagram of the specialize< parameters > template.

Class diagram of the Integer class from the Proper Numbers Library.

Class diagram of the RationalTBBase template and Rational specialization type from the PN Library.
Class diagram of the Functional and Quadratic template classes.

Class diagram of the Functor abstract class and two derived from it functors.

Work threads data transmission class diagram.

Class diagram of the DataSource abstract class and the derived from it Data Sources.

List Of Program Listings

First revision of the main loop of a function instantiating the mean median map.

Improved first revision of the mean median map instantiating function to use definitive terminating condition.

Improved revision of the main loop of the mean median map instantiating function.

Template class achieving variable specialization using already available C++ facilities.
Implementation of the Object Specialization Model using templates and inheritance.

The Integer class from the Proper Numbers Library.

The RationalTBase template and Rational specialization type from the Proper Numbers Library.
The Quadratic and Functional templates, and the Functor, SquareRoot and CubeRoot classes.
The Mean Median Map Application.

MATLAB script for importing and visualising data from multiple sequences.

MATLARB script for importing and visualising data of a Mean Median Map sequence.

14
15
15
20
21
21
25
29
37
53
61
62
75
75

10
14
19
28
34
38
54
63
76
92
93

Part 1

Introduction

The mean median map is a simple to define function, which demonstrates very complex behaviour and spectacular
dynamics. The mean median map starts with a finite sequence, which after number of recursive iterations always
seem to settle to some value. To settle to some value means that every new value produced by the map is the
same as the one before. The mean median map has been suggested by Schultz and Shiflett Ref. [2] and has been
further investigated by number of mathematicians, including Chamberland and Martelli Ref. [1]. These authors
have proposed number of conjectures regarding the nature and behaviour of the mean median map. The author of
this paper will answer to some of the questions which they raise. For example in Ref. [1] Chamberland and Martelli
notice a remarkable coincidence of a double occurrence of the settling value some time before the settling occurs.
These 'miraculous’ appearances seem to occur randomly. This paper will demonstrate that in fact in order for the
sequence to settle there must be such double occurrence and in fact that this is the condition for settling of the
sequence. Although relatively rare there are many sequences in which the repeated settling value occurs three or
more times before the sequence settles. It will be also demonstrated that these occurrences need not be isolated
or unique, and that in fact the settling value is the smallest value of all such repeated values. For the successful
outcome of this investigation it was necessary for the author to develop substantial amount of software, which is
intricate to, and undividable part from the problem solution and therefore it is presented in the paper as integral
part of it.

The positive outcome of this investigation was mostly due to the complementary and mutually beneficial use of
mathematics and computer science. To write the software required to help the investigation the author had to first
deduce and prove the sequence settling condition. Clearly two or more equal consecutive values produced by the map
are necessary but not a sufficient condition to say that the sequence is settled to that value. Hence mathematics
produced the important theorem that allowed the software to produce settling values at all, i.e. a terminating
condition. On the other hand the powerful and flexible software written for this project allowed the author to produce
a large number of converging experiments which allowed important observations and inspired number of theorems.
These theorems on the other hand then allowed the software to be improved, thus a later version of the software using
them is approximately ten times faster than the previous versions not using them, which in turn allowed even more
experiments. However, the more important contribution of computer science to this project was the perspectives
that it brought to the table allowing the decomposition of the problem to a lower level of what mathematics usually
settles for, and allowing the author to see the intricacy of the map and explain it functioning. In particular these were
the definitions of the Sorted Sequence, Centre of the Sorted Sequence, Halt Kernel, Critical Distance and others. In
addition to these abstract definitions in order to be able to compute the settling value of the map for an arbitrary
rational number the author had to develop an arbitrary precision rational numbers since the floating point numbers
are unable to satisfy the conditions for absolute precision. Arbitrarily precise rational numbers however are only
possible after first creating arbitrarily large integer numbers. Starting the project with rational numbers defined
over 64 bit integers for both the numerator and the denominator it became soon clear that much larger precision
is required. This lead to the development of an arbitrarily large integer numbers which were used to replace the 64
bit integers in the definition of the rational numbers. On average rational numbers based on 64 bit numerator and
64 bit denominator overflow after about 100 iterations of a non-setteled map, compare this to the 334,562 iterations
required for the map to settle when the starting sequence is (0, 5141309/9999000, 1). The software was later
expanded to use quadratic irrational and other irrationals with similar form. The generic numbers developed for this
project are now aggregated in a generic numeric library called Proper Numbers Library. The Proper Numebrs
library offers arbitrarily large integer numbers, arbitrary precise rational numbers and a set of irrational numbers
with the form of quadratic irrationals. It is published under the MIT Open Source Software License Agreement, can
be downloaded from http://www.MBBSoftware.com/Software/ProperNumbersLibrary/Default.aspx and freely
used by mathematicians, computer scientists and software engineers.

In addition to the insights about of the median map and although not necessarily related to it, this paper also
introduces a new software methodology called Object Specialization Model. The author developed the Object
Specialization Model previously, but due the tight time frames for this investigation it was used in the developed
software in order to achieve (a) faster devleopment with less errors and (b) more coherent code and in particular
better Proper Numbers Library. Since the Object Specialization Model is a new concept, published here for
first time it is necessary to be explained. The Object Specialization Model makes software development more
comprehensive and at the same time faster due reducing the possibility for making errors. This is achieved by
adding context to objects (variables) and thus making impossible to miss-assign variables, which is one of the
common mistakes during software development. For example, consider the two sequences used in the median map:
the sequence of values that are produced by the map and the sequence of the same values but sorted in ascending
order. Generally, the two sequences are from the same type, say Rational, so the author could easily make the
mistake to add a value to the wrong sequence. This would lead to investigating a different map, with different
properties and invalid for the mean median map results until the error is located and corrected. By using the
Object Specialization Model however the author adds context to each of the sequences, which makes any such
invalid assignment or arithmetic operation intrinsically impossible. A simpler to understand example would be the
following one: suppose that there are two Boolean variables representing the values of two unrelated propositions
say: “Today is Monday” and “Water flows”. Clearly they have nothing in common and must not be confused or
mixed, however since the two variables representing the propositions are of the same Boolean type it is possible to
erroneously assign the value of one of them to the other or use them in the same Boolean expression. The Object
Specialization Model makes such errors impossible. The Object Specialization Model has additional architectural
benefits such as expanding and structuring the namespace and language syntax function space expansion which is
otherwise impossible and others. The Object Specialization Model requires no additional programming, presents
no performance overhead, but requires somewhat more typing. It is available from http://www.MBBSoftware.com/
Software/ObjectSpecializationModel/Default.aspx under the MIT Open Source Software License Agreement.

Part 11

Background and Conjectures

To understand the nature and behaviour of the Mean Median Map the author developed fair amount of software
and applied formal software development techniques. It is important to stress that in this paper the software
development is not a serf with void significance of its implementation. Quite to the contrary, formal methods
and approaches from computer science and mathematics flow freely in both directions and are equally important.
Precisely this approach is what allowed the author to comprehend the nature of the mean-median map functions.

2.1. Definition of the problem

The median of a set S,, = {z1, x2, 23, ..., Tp}, where z1 < 9 < x5 < ... < x,, is defined (traditionally) as

) Tnt, n — odd
median(Sy) = q | 2 .
s(xn +2n41), n—even

—~

for simplicity the median will be denoted as

M(S,,) :=median(S,,) ,

and when there is no ambiguity as
M, = median(Sy,) .

Definition. The recursive sequence X is denoted as
X = (x,), with X, = (x1,22, ..., Tn),
where z,, is defined as the solution of the mean-median equation

1+ 2o +x34+ ... +2)H
n

= Mn-1, (01)

and is specified by a list of initial values x1, zo, ..., T_1.

The following definition is required by the necessity of the existence of the object that it describes in any software
model attempting to implement X,, as defined above.

Definition. The sequence X:°"* is obtained from X,, by arranging its terms in ascending order such that z,, € X3°"
where Z; < Z;41 for all ¢, 0 < i < n using the function

E:R x X, — X3t (0.2)

In particular after each iteration and generation of a new x,, € X,,, x, is also placed in ascending order as T, € X3°",
k< n by the sorting function. The function = is essentially a permutation on X,, defined by ascending in R order.
The use of tilde instead of superscript to denote the elements of the ordered sequence is in order to reserve the

superscript for use allowing distinguishing between the elements of different iterations ZZ?LTL], where k£ < n and [n]

denotes the iteration count i.e. the number of elements in X,, and respectively igc"] for X5ort.
The sorted sequence is necessary to compute the median. Normally its existence is understood as implied, overlooked
and largely ignored.

Definition. A sequence X,, produced by the rule 0.1 is said to be halted if 35 ¢ N, Vk € N, k > j, s.t. z; = xy,
and z; is called halt value.

The sum of all elements of the sequence is:
n
i=1

The mean value (expectation) of the sequence is given by:

Sn 1~
En:?—ﬁ;xl.

Using this notation we can now express the definition 0.1 of the sequence X, in the following equivalent ways:

Tpi1 = (n+ 1M, — sz =Mn+1)M,—-S,=(n+1)M, —nE, (0.3)
i=1

2.2. Conjectures

Chamberland and Martelli have formalized the following conjectures.

Conjecture 1. (Chamberland and Martelli - 2007 (Conjecture 2.1)). Strong terminating conjecture

For every finite non-empty set S C R, there exists an integer k such that the associated infinite sequence satisfies
xj = Tk, for all j > k. In other words the sequence of the terms settles permanently (halts) to the median after
finite number of mean-median iterations.

The author of this paper believes that the Strong Terminating Conjecture is true. Since Chamberland and Martelli
have used the software package Maple for their investigation, it is likely that they have experienced problems to
observe X,, settling for some particular rational numbers. Maple is an interpreter and runs significantly slower
relative to compiled and optimized code such as the one created for this investigation. In addition since the number
of iterations before the sequence settles is unknown, when using Maple, one would need to allocate significant
amount of system memory in order to ensure that there will be enough space for all elements of the sequence in
the data containing structure. Hence sufficient amount of system memory for some sequences may have not been
available to them at the time of their research. The author of this paper has observed cases when the allocated
system memory for certain sequences has been larger than 5 GB, an amount of memory not commonly available
in previous years. Further certain theorems suggested in this paper are required to accelerate the computations.
Finally the machine used by the author of this paper is of order of magnitude faster than a common PC presently
and it is likely to have been also much faster than the machines available to Chamberland and Martelli. In all
these conditions of compiled, and optimized as both algorithms and as compilation code running on a particularly
fast computer it took several days for some sequences to halt. Chamberland and Martelli suggested the following
weaker conjecture.

Conjecture 2. (Chamberland and Martelli - 2007 (Conjecture 2.2)). Weak terminating conjecture

For every finite non-empty set S C R, the limit of medians is finite.

Conjecture 3. (Chamberland and Martelli - 2007 (Conjecture 2.3)). Continuity conjecture

The function M is continuous.

While it seems that this conjecture is also true the author will not take position on it in this paper.

Part III

Results

We will begin with the following fundamental theorem:
Theorem 4. (Chamberland and Martelli - 2007 (Theorem 2.1)). The sequence of medians is monotone.

Proof. Starting with S,, = {z1, ..., x,} C R,we have
1+ xp +xpr1 = (n+ 1) M,.
The next iteration produces
T+ T+ T+ Tz = (04 2) Mg

Subtracting yields
l‘n+2 = (TL —+ 1) [Mn+1 — Mn] =+ M7l+1. (04)

If M,y1 > M, then x, 49 > M, 1, which in turn forces M, o > M, .1 by definition of median. This process
may be continued indefinitely producing a sequence of medians which is monotonically non-decreasing. Similarly,
if M, 11 < M,, the sequence of medians is non-increasing.

O
The following definition is a direct consequence from formal methods used in software development.
Definition. The centre C,, of the finite sequence X7°" is defined
Cpn i ={Z: k€ K,}, (0.5)

where K, is a sequence of indices defined as follows:

ntl if nisodd and X, is not halted
K, = %7 ntl, if nis even and X, is not halted .
(j: z; =My), if X, 1s halted

In computational form the elements of a non-halted sequence that constitute the centre is

[(n+1)+(n+1)mod2]}

Ko o= {;[(”Jrl)(nle)mon], %

and the median defined using the centre is

- 1
M, = | K| T =g [x%[(nle)*(nJrl)modz] + x%[(n+1)+(n+1)modg]j| .

Remark. Informally, the centre of a sequence consists from the elements of the sorted sequence which are used to
compute the median. When the sequence is halted then the centre consists from all elements equal to the median.

Fact 5. (Chamberland and Martelli - 2007 (3. Three Initial Points)). The dynamics of the set S = {a, b, c}, with
a < b < ¢, are equivalent to those of {0, x, 1}, where x € [%, 1].

Proof: Ref.[1]

Note. W.L.O.G., this fact will be used from now on and also base the software on it. This implies that from now
all sequences are M ,,- increasing sequences, however the results apply to all sequences.

The following excerpt of source code is the main loop of the first revision of a function instantiating the mean
median map. This code generates the X, sequence and the auxiliary XJ°" sequence. Later this code will be
optimized to incorporate theorems to be discussed. For this reason it is only the most essential loop that is included
here omitting the trivial details. The source code is self-explanatory and will not be commented on, but note the
implied definition of the Centre of the sorted sequence through the coefficients identifying it. Also note that the
loop terminating condition is speculative, with very low probability of error. The first most important objective is
identifying the appropriate loop terminating condition. The object specialization is discussed in the later chapters.

Listing 1. First revision of the main loop of a function instantiating the mean median map.
while(!AreTheLastTwoHundredXnTheSame())

MEDIAN_TYPE mtMed_n_plus_1(0);
MEDIAN_TYPE mtX_n_plus_ 1 = (listXn_ByValue.GetCount() + 1) * mtMed n — mtSum_n;

// Add the new Xn in the time domain sequence.
listXn ByTime.AddTail(new specialize < MEDIAN_TYPE, specialize< Xn, Clock > >(
specialize < MEDIAN_TYPE, specialize< Xn, Clock > >::Initialize (mtX_n_plus_1)));

// The new Xn i.e. X(n+1) is now computed, It is not yet injected in the sequence but, I will

// add "4+1" to the cardinality of the sequences to compute the correct median indexes. This is OK
// since | insert X(n+1) in the sequence independently of the new median computation.

const DWORD dwSequenceCount(listXn_ByValue.GetCount() + 1);

const DWORD dwMedindexA((dwSequenceCount 4+ 1 — ((dwSequenceCount + 1) & 0x01)) / 2);
const DWORD dwMedIndexB((dwSequenceCount + 1 + ((dwSequenceCount + 1) & 0x01)) / 2);

MList< specialize < MEDIAN_TYPE, specialize< Xn, Value > > >::MP< specialize < MEDIAN_TYPE, specialize< Xn, Value > > >« pMP(
listXn_ByValue.GetHeadMP ());

// Insert dX_npl in the sequence and find the new Median.
for(DWORD dwindex = 1, dwConditions = 0; (0x00000003 != dwConditions) && (NULL != pMP); dwindex4++)

if((0 = (0x00000001 & dwConditions)) && (mtX_n_plus_1 <= #*pMP—>GetObject()))
{
// Insert median here.
pMP = listXn_ByValue .AddBehind(pMP->GetPrevious (),
new specialize < MEDIAN_TYPE, specialize< Xn, Value > >(
specialize < MEDIAN_TYPE, specialize< Xn, Value > >::lnitialize(mtX_n_plus_1)));

dwConditions |= 0x00000001;
if (dwMedIindexA == dwlindex)
mtMed _n_plus_1 = #pMP->GetObject();
H
if (dwMedIindexB == dwlindex)
mtMed _n_plus_1 += #pMP—>GetObject();
mtMed n_plus_1 /= 2;
dwConditions |= 0x00000002;
H

pMP= pMP—>GetNext () ;

10

if (dwSequenceCount != listXn_ByValue.GetCount())

// The mtX_n_plus_1 has not yet been added.
listXn_ ByValue .AddBehind(listXn_ByValue. GetTailMP (),
new specialize < MEDIAN_TYPE, specialize< Xn, Value > >(
specialize < MEDIAN_TYPE, specialize< Xn, Value > >::Initialize (mtX_n_plus_1)));
H

mtSum_n += mtX_n_plus_1;
mtMed_n = mtMed_n_plus_1;

listMedians.AddTail(new specialize < MEDIAN_TYPE, specialize< Mn, Clock > >(specialize < MEDIAN_TYPE, specialize< Mn, Clock >
>:ilnitialize (mtMed n)));

Theorem 6. Suppose the sequence S, = {x1, za,..., T} is a starting set for the recursive sequence X,, . Then
foralln >k+1, vp41 = M, +n(M, — My,—1).

Proof. By definition we have 2,01 = (n+ 1) M, — S, = (n+1) M, — z, — Sp—1, but ,, =nM,,_1 — S,_1, so:

Tnt+1l = (n + 1) Mn - [nMnfl - Snfl] - Snfl = (n + 1) Mn - TLMn,1 + Snfl - Sn71>

and

Tpi1 = (n+1) M, —nM,_. (0.6)
Rearranging the brackets and we get:
xn+1 = Mn +n (Mn — Mnfl) . (07)

Now, suppose n+ 1 = k+ 1, then we can define M,, = M}, however we cannot define M, _; = M}._; since x; € X
is independent by assumption. So the for n +1=%k+ 1, z,11 = M,, + n (M, — M,,_1) is not well defined. Finally,
suppose Z,+1 = x4 is determined by definition 0.1, then for n > k + 2 we have both M,, and M,,_; well defined
and so the formula x,,11 = M,, + n(M,, — M,,_1) is well defined for all n > k + 1. O

Note. This form of the sequence generation law is more useful to understand the problem and will be used more
often than the original form.

Theorem 7. For alln e N, E, 1 = M,.
Proof. By definition of F,, and S, we write:

SnJrl _ Ln41 + T + Snfl
n+1 n+1 '

EnJrl =
From equation 0.6 we express x,41 = (n+1) M, —n M,,_; and from equation 0.3 we express x,, = n M, _1 —Sp_1.

Substituting in the equation above we get:

1
En+1 == m [((n +].) Mn - nMnfl) + (TL Mnfl - Snfl) + Snfl] .

Expanding the brackets and simplifying yields:

11

1
E,1=— 1) M,],
= — [+ 1) M)
which after cancellation gives the required result:

En—i—l =M,.

Corollary 8. FE, is monotone.

Proof. M, is monotone by theorem 4. E, 1 = M,, by theorem 7, so E, is also monotone.

Lemma 9. For alln>1, M,, = E,, = xpy1 = M,, = E,.

Proof. From equation 0.3 we write 2,41 = (n+ 1) M, - S, =n+1)M, —nE,=nM, —nE,+ M, =M, O

Theorem 10. Suppose that for some n > 1, M,, = M,,+1. Then, for allt € N the following hold:
a) M, = Mn+t
b) Tnyort = M,

C) Mn+1 = En+1

Proof. a) From the definition of the sequence:

Tn = nMn—l - Sn—l

so the n-th and (n + 1)-st medians are therefore M,, = SntTuti and M1 = Snt1tlnss Ginee N, = M, 41,

n+1 n+2

Sn + Tn+1 o Sn+1 + Tn42

n+1 n -+ 2
SO
Sn, Tnt+1 Snt1 Ln+42
n+l n+l1 n+2 n+2
but

Sn+1 - Sn + Tn+1

and therefore
Sn LTn41 _ Sn Tn41 Ln4-2
n+l n+1 n+2 n+2 n+4+2°

Multiplying both sides by (n + 1)(n + 2), we obtain:

(n+2)Sp +(n+2)zpp1=n+1)Sy + (n+ Dzpyr + (04 1agpo.
Solving for x, 42, and simplifying, we obtain:

Sn + Tn+1

=M, = M,,.
n+1 +

Tn42 =

12

(0.8)

Now, informally, since x,, 1o = M,, = M, 11, it follows that x, o will lie between %, and Z,, i.e., it will become

an element of the centre, which implies that M, 12 = 412 = My 11 = M,.

Formally, since M,, = M1 :

- If n is odd, then 50& =M, =M,41=1% ([fjll] 4 glrtl),

n+1 +1
but xﬂl = x[ffll] or x[n] = a:[f;lil, SO w[nll = x[fflll = [%rllj_l, where T ~[= e (), and x[:f:rll], 50[:%1_{1 € Cht1
are the only elements of C and Cp 41 respectlvely
- If n is even, then % ([n] + a:["]) M, =M,11 = [:fjlu,
but x[nl x[fffll] or x[f] = x[ffll], SO x[f] = [g]—k x[:fl], where :%[g], ~[ﬂl e C), and i[:fl e Cr 41 are the only

elements of C and Cn+1 respectlvely

Considering equation 0.8 we write xp4+2 = My, = My 411 = &y = Ty for some m < n in the sorted sequence where
Zms Tma1 € C respectively. This however implies that z, 12 will be placed just next to Z,, = Ty in X3 hence:
- if m, m+ 2 are odd, then My, 12 = Zppi2 = My11 = My;

-if m, m + 2 are even, then M, 19 = 1 (Zmni1 + Tmt2) = Tmy1 = Mpi1 = M,,.

So My 1o = My+1 = M,. Let m = n+ 1,then M,, 1 = M,, then the argument repeats and we get M, 12-p1+3 =
My 1o = My 1 = M,. Then given any ¢t € N the argument repeats t times and we have M,,; = M,,.

b) From part a) we have that if M,, = M,,1 then M,, = M, for all ¢ € N. Suppose then the condition is met

and let n be such that for all t € N M,, = M,,;,. Then by theorem 6 we have:
Tpyoyt = (N + 1) (Mpg14t — Mogt) + Mpyi4e,
but M,, = M4+, 80 Myy14¢ — Myt =0, so
Tpyort = Mpy140 = M, forallt € N.

¢) Immediately from theorem 7 E,, 1 = M, since M,, = M, 11 it follows that FE, 1 = M. O

Note. Theorem 10 gives the condition when the sequence X, halts, which is M,, = M,,1; and the halt value which
ish=M, =M,+1. M,, =E, = x,41 = M,, = E,, is by implication another halting condition, obviously it is
equivalent to M,, = M,, 1. The process of halting the sequence demonstrated chronologically is as follow:

1) Mn = Mn+1 = Mn+1+t, fOr 311 te N

2) Myy1 = Eny1 = Epqiqy, for all te N

3) Tpyo = Mn+1 = Tnp424t, for all t€ N.

13

Remark. z,, = x,41 is not a condition for the sequence to halt. There may be 2 or more equal consecutive x,,
values and yet not have the sequence halted.

Thus we now modify the main loop of the function instantiating the mean median map to use theorem 10 a) in the
following way:

Listing 2. Improved first revision of the mean median map instantiating function to use definitive terminating condition.

while (mtOldMedian != mtMed n)
{

// Store the median as Old—Median before computing the new one.
mtOldMedian = specialize < MEDIAN_TYPE, specialize< Mn, Clock > >::lnitialize(mtMed n);

/* as before »/
3

Corollary 11. Any sequence with starting set containing one or two elements is trivial and halts immediately.

Proof. Let {z1} be the starting set for some sequence X,,, then M7 = z1, so Xo = (21, 22 = 221 — 21 = 21), SO
Mo = 21, 0 M1 = Ms and by theorem 10 a) the sequence is halted. Suppose {z1, 22}, 21 < x4 is the starting set
for some sequence X, then My = § (21 + 22), 30 X3 = (21, @2, 3 = 5 (v1 + 22) — (21 + 2) = § (z1 + 22) = Ma).
Now, since z; < x it follows that #3 = My < x4, so X5 = (1, 23, 72), S0 My = M3 so by theorem 10 a) the
sequence is halted. O

Remark. Sequences produced from starting sets with three and more elements are highly nontrivial. Consider the
highly nontrivial relationship between the Start Value and the Halt Value, and between the Start Value and the
Number of Iterations required for the sequense to halt for sequences produced from three point starting set as
follow {0, =, 1}, = 0.5+ mn, 0 < n < 10000, n € N shown on the figures below. Chamberland and Martelli
demonstrate certain dependences on a similar graph that they have produced. The red rectangle in figure 1 zooms

in on the first bleep in the linear part of the graph visually.

Figure 1. Start Value vs. Halt Value for sequences with starting sets {0, =, 1}, x = 0.5 + mn, 0 < n < 10000, n € N,

14

Figure 2. Start Value vs. lteration Count Until Halt for sequences with starting sets {0, z, 1}, 2 = (J.E)ern7 0 < n < 10000, n € N.

3.5x10e+4

25— —

15— —

We now zoom in numerically 1000 times on the interval 0.514-0.515 with otherwise the same setting.

Figure 3. Zoom in on the interval 0.514 - 0.515 with starting sets {0, z, 1}, z = 0.514 + mn, 0 <n < 10000, n € N,

28 | | | | | I | I '
Index vs Halt Value
26 Index vs Max Value

24— —

B8l s N .

2 _
18- —
16— -
14— —

12+ —

, L [N & | | | |

I I I T T T
+
3.5x10e+h Index vs Iterations Count Value

25— —

05— —

| .|.|.nlh.h| i 4 1 | |
0 1000 2000 3000 4000 5000 6000 7000 3000 9000 10000

15

Observe in figure 2, that the largest number of iterations required for all investigated sequences starting in the
interval of the first bleep (0.514-0.515) is approximately 100. In figure 3 however the largest number of iterations
for a sequence starting in the same interval is over 300000, in fact 334562 iterations. The more we zoom in, the
more complicated graphs are the results. Similar results are produced when experimenting with other numbers,
including with sequences converging to an irrational numbers. Number of experiments were produced with sequences
converging to the golden ratio -1, i.e. with starting sets {0, x, 1}, 2 = Fl:il , where F',, is the n-th Fibonacci number.
Clearly the information stored in the graphs is incomplete and not useful for interpretation and solving the problem.
We continue with further results.

Corollary 12. Let n € N, M, = M, 11 < Tpio = Mp41.

Proof. 7 = 7 is part b) of theorem 10. ” < ” Suppose that for some n € N, x,10 = M, 1. From theorem 6we
write My41 = pyo = Mpy1 + (n+ 1) (Myy1 — M,), so My1q — M, =0, so M, 11 = M,. O

Remark. This corollary may seem trivial, however it is required to safely optimize the software and remove an
auxiliary object holding M,,_1 (or M) depending on how the software is constructed. By theorem 10 the sequence
halting condition is M,, = M, 1, which implies that the software needs to keep track of one M,, and terminate the
generation of new z,41 when the current M, is equal to the previous one. However the above corollary justifies
terminating the generation of new z,.1 when the newly generated z,4; is equal to the current M,. This is
important for speed wise optimisation of the software. In particular, if one is using processor/coprocessor native
arithmetic registers data holders, then the memory spent for one additional M, is negligible, as well as the processor
time for assignment and comparison. The later in a modern processor would be a few processor clocks, say 7 clocks
on average, propagated on average say 50,000 elements sequence is still not essential. However since the software
is using arbitrarily precise rational and algebraic irrational numbers, constructed over an arbitrarily large integer
numbers an assignment and comparison operations may take much larger amount of processor time, and hence this
optimisation is important, though it is not essential.

Lemma 13. Let k, n € Nk < n, then for alln > 1, Mopi1 = x, = Ty,

Proof. 2n+ 1 is odd for all n € N, so by definition 0.1 Ma,+1 = z,, but Zy=x,, for some k < n. O

Lemma 14. For alln € N, 2,41 > M,.

Proof. From definition 6 x,+1 = M, + n(M, — M,,_1), but M, is monotone by theorem 4, so M, > M,_1, so
n(M, — M,_1) >0, 80 Tpt1 > M,. O

Corollary 15. For every two newly added to a non-halted sequence elements x, 1 and x,1o the centre of the sorted
sequence travels to the right (towards the greater values elements in X5°7) with one position retaining its structure.

Proof. From lemma 14 x,; > M, and using the definition of the centre C, := {Z; : k € K,}, where K,, :=
{3[(n+1)=(n+1)mod2], 1 [(n+1)+ (n+1)mod2]}. Suppose n is odd, then:

- For K,,, (n is odd) we get:

Ky={3n+1], 3ln+1]}

16

- For K,,11, (n+ 1 is even) we get:
Koy ={3[((n+1)+1) = ((n+1)+1)mod2], 2 [(n+1)+1)+ ((n+ 1)+ 1) mod 2]}
Kpi1={3[(n+2) — (n+2)mod2], 1 [(n+2)+ (n+2)mod2]}

Ky = {21, 221, 50 the centre position stays the same, but its size increased by one.

- For K12, (n 4 2 is odd) we get:

Kpo={3[((n+2)+1) = ((n+2)+1)mod2], :[(n+2)+1)+ ((n+2) + 1) mod 2]}

Kpya ={3[n+3], 3[n+3]}

Ko = {”T*?’}, moving the position of the centre with one position to the right towards the larger value elements
in the ordered by size sequence, and restoring its original structure containing one element.

- For K,,13, (n+ 3 is even) we get:

Kppz={50((n+3)+1) = ((n+3) +)mod2], §[((n+3)+1)+ ((n+3) + 1) mod2]}

Kpis={3[(n+4) — (n+4)mod2], 1 [(n+4)+ (n+4)mod2]}

3
Kn+3 = %

, "7"‘5}, so the centre position remained the same, but its size increased by one.

Continuing for higher n the pattern repeats itself. So for a non-halted sequence, every two newly added to the
sequence elements increase the centre position by one retaining its structure. O

Remark. The statement of this corollary is the same as to as to say that for a non-halted sequence the speed of
movement of the centre towards the larger values elements is equal to half of the speed of adding of new elements
to the sequence, or that the speed of adding of new elements to the sequence is twice as fast as the speed of the
centre.

Lemma 16. For alln € N, z,, > M,.

Proof. From lemma 14 z,.1 > M,, for all n € N, so x,41 will be positioned to the right (in the direction of
increasing values) in the ordered sequence in respect to the centre.

There are the following cases of positioning of x,, 1 in the ordered sequence. z,; becomes part of the centre, x,,41
is positioned immediately to the right of the centre and finally x,; is positioned to the right of the centre with

some elements of the sequence between the centre and ;1.

1. z,41 becomes part of the centre.

17

- if [X507 = 2k+1, so | X5 = 2k, so Centre, = {a, b}, so X3 = {..., a, Tny1, b, ...}, s0 Centre, 1 = {zni1},
80 My 11 = 241 and in general for this case x, = Mp;

- if [X501t = 2k, so | X5 = 2k + 1, so Centre, = {a}, X3 = {..., a, Tny1, ...}, s0 Centre, 41 = {a, Tpi1}, 80
M1 =3 (a+ xp41) 50 Myy1 < 2,41and in general for this case z, > M,;

2. X5t ={..., Centre, xp41, ...}, and

- if |X§iﬁt\ =2k +1, so | X3°"| = 2k, so Centre, = {a, b} then M, =b, but b < x,,.1, 50 M,,41 < T, 41 and in
general M, < x,;

- if [X591 = 2k, so | X5t = 2k+1, so Centre,, = {a} then M 11 = % (a4 2p41), but @ < zp41, 50 Myy1 < Tpia
and in general M,, < z,;

3. X5t ={..., Centre, ..., Tny1, ..}, and for simplicity w.lo.g. X 1" = {..., Centre, ¢, ,41, ...}, then

- if ¢ = x,,41 we are in the case 1 and we are done;

- if ¢ # @41, then for some a; € Centre, i =1 or i =1, 2 we have a; < ¢ < x,41, then

M = ay, ‘ngrqq =2k+1, so Mn+1 =a1 << Tpti
=
L(ar+a2), |XJt =2k, 50 Mpy1 = 1 (a1 + az) < ¢ < zpq1.

So My4+1 < ®p41 and in general M,, < z,,. Combining this with (1) and (2) above we have the desired result that
foralln € N, z,, > M,. O

Remark. The last two results are very important. They are used to accelerate the software on average about ten
times. Since x,4+1 = (n+1)M,, — S,, is not monotone function, without them the software have to scan the whole of
the sorted sequence in order to find the correct location for every newly generated x,, 1. Using these results however
the software can search only from the last median upwards, thus reducing the comparison operations to at least
half. Later it will be shown that in fact as a sequence grow in size the relative benefit from these results also grows
since the newly generated z, 1 are becoming closer and closer to M,,. Further optimization of the software due to
these results is that because z,, > M,,, x,, will be placed always on the right (on the side of the increasing by value
members of the sequence), but this means that a pointer to the first element of the centre of X5°"* will remain valid
after adding the new element to the sequence. Therefore it is no longer necessary to calculate the indexes of the
elements of the centre X °" and iterate through the list representing the sequence in order to retrieve the centre
elements and use them to calculate the new median. Instead, only keeping a pointer to the first element of the
centre of X7° and increasing it with one for every two new elements added to the sequence is sufficient to allow us
to compute the median in an optimal manner. Without this result the software computed 2157 sequences starting
at 514/1000 (0.514) and reaching 1713881/3333000 (0.5142157215721572) for approximately 80 hours. Modifying
the software to use the above results computed the same sample of data for approximately 8 hours, thus achieving
approximately 10 fold performance increase.

18

Listing 3. Improved revision of the main loop of the mean median map instantiating function.

for (MEDIAN_TYPE mtX_n_plus_1 = (listXn_ByValue.GetCount() + 1) * mtMed n — mtSum_n;
mtX_n_plus_1 != mtMed_n;
mtX_n_plus 1 = (listXn_ByValue.GetCount() + 1) * mtMed n — mtSum_n)

NULL != pMP; pMP= pMP—>GetNext ()

{
// Lemma 12. X[n+1] >= M[n].
MASSERT(mtX_n_plus_1 >= mtMed n);
mtSum_n += mtX_n_plus_1;
// Add the new Xn in the clock sorted sequence.
listXn ByTime.AddTail(new specialize < MEDIAN_TYPE, specialize< Xn, Clock > >(
specialize < MEDIAN_TYPE, specialize< Xn, Clock > >::Initialize (mtX_n_plus_1)));
// Insert dX_np1 in the sequence and find the new Median.
for(MList< specialize < Pair< MEDIAN_TYPE, DWORD >, specialize < Xn, Value > > >::MP<
specialize < Pair< MEDIAN_TYPE, DWORD >, specialize < Xn, Value > > >x pMP(pMedian);
)
{
if(mtX_n_plus_1 < pMP—->GetObject ()—>GetLabel())
{
// Insert median here. It is important that the inequality is strict! <= would insert
// element in the correct place in respect to the values, but that will make the pointer to
// the median to point to the wrong place as the sequence will be shifted with one element.
pMP = listXn_ ByValue.AddBehind (pMP->GetPrevious (),
new specialize < Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > >(
specialize < Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > >::lInitialize(
Pair< MEDIAN_TYPE, DWORD >(mtX_n_plus_1, listXn_ ByTime.GetCount())))
)
break ;
H
H
if (listXn_ByTime.GetCount() != listXn_ByValue. GetCount())
{
// The mtX n_plus 1 has not yet been added.
listXn_ ByValue.AddTail(new specialize < Pair< MEDIAN_TYPE, DWORD >, specialize < Xn, Value > >(
specialize < Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > >::Initialize(
Pair< MEDIAN_TYPE, DWORD >(mtX_n_plus_1, listXn_ByTime.GetCount()))));
H
if(0 == (listXn_ByValue.GetCount() & 1))
{
mtMed n = (pMedian—>GetObject ()—>GetLabelRef() + pMedian—>GetNext()—>GetObject ()—>GetLabelRef())/2;
pMedian = pMedian—>GetNext () ;
H
else
{
mtMed_n = pMedian—>GetObject ()—>GetLabelRef();
H
listMedians.AddTail(new specialize < MEDIAN_TYPE, specialize< Mn, Clock > >(
specialize < MEDIAN_TYPE, specialize< Mn, Clock > >::Initialize(mtMed n)));
}

Corollary 17. The sequences X,, and X35°™ are bounded below by inf (M,,), and in particular by M;.

Proof. The first part follows immediately from lemma 16. The second part follows from the first part and from the

fact that (M,,) is increasing.

O

We now display a helpful graph visualizing the above results for X,,, X5°"* M, E, and M, — M,_; in respect
to the iteration count until the X, halts. The starting set for this experiment is {0, 0.5(2180), 1}, however the
dynamics of this sequence is common for nontrivial sequences. The graph shows the sequences until M,, # M,,_1,
which is the terminating condition for the sequence generation as per theorem 10 a) and program listing 3.

19

Figure 4. Plot of sequences until the halt, for starting set {0, 0.5(2180), 1}.

3

17 r

1 + “
=f=Xn -Time
==Y n Sorted
== Mni
——En
e W[N] - M[n-1]

0.5
o -

1 3 5 7 9 11131517 192123 2527 29 31 33 3537 39 41 43 4547 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 B1 83 B5 87 89 91 93

We acknowledge the increasing (monotone) X 50”, M, and FE, sequences and the non-monotone X, and M, —
M, _1, as well as x,, > M, for all n € N and other observable results.

Definition. Any subsequence K := (&;, Zi4¢ : 5 [(n+1)+ (n+1)mod2] <i, 0 <t €N, &; = &yqy) C X7 is
called Halt Kernel.

Remark. A halt kernel is a subsequence of X5°" such that it has more than one elements which are equal and
these elements are bigger than the elements constituting the centre, i.e. they are to the right of the centre (in the
direction of increasing values). Since X, is not monotone suppose that for some i, j < n, i # j, z; = x; # M,,
then for some k < n we have z; = Z), = Tp41 = x; and thus Ty = T4 € X;?"” form a halt kernel in it.

The following example illustrates the operation of the map. Suppose we begin with starting set {0, 0.7, 1}. The
first new element is calculated using definition 0.1 is 4 = 1.1. The next x,, are calculated using theorem 6. In
reality the software uses only definition 0.1, however it is easier understanding the mean median map in terms of
theorem 6. For this reason on the figure starting from z5 onwards new z,, are computed using theorem 6. The
value produced for x5 is 1.45. By corollary 15 the centre of the sequence travels with half of the speed of adding

20

Figure 5. Halt Kernel forming for sequence with starting set {0, 0.7, 1}.

Clocks (lteration-starting Set Size) Legend
0 .7 1 o - Current Median
1.1 -New Iy,
- Halt Kernel
X, =4M, -S,=4*07-17=11
0 .07 P85 .1 11
x;=4(M, -M,) +M, = 4%0.15+0.85= 1.45
0 0.7 ol 11 . 1.45
xo=5(M, M)+ =
0 .0.7 1 ol05 .11 .1.45 .1.75 —5*015+1.00
—175
x. = 6(M, -3,) + M, = 6%005+105= 135
0 .0.7 1 ol1 135 .1.45 175
xg=7(M, -M,) +M, = 4%0.15+0.85= 145
0 0.7 1 11 o 135 .1.75

new elements to X,. The next two values added to the sequence are zg = 1.75 and z7 = 1.35. The following
xg = 1.45 however is equal to x5, so as xg is added to the sequence a new Halt Kernel is created. This halt kernel

Figure 6. Data - final iteration - produced by the software for sequence with starting set {0, 0.7, 1}.

Clocks Xn Xn Sorted Mn En M[n] - M[n-1]
0 0 0 0
1 + 7 +0.0000000000000000 + 7 +0.0000000000000000 + 7 +0.0000000000000000 + 7 +0.0000000000000000 _
7 7 7 7 7
2 4 5 +0.7000000000000000 4 oo +0.7000000000000000 4 - +0.3500000000000000 4 5= +0.3500000000000000 4 — +0.3500000000000000
1 1 7 17 7
3+ 7 +1.0000000000000000 + 7 +1.0000000000000000 + o= +0.7000000000000000 + = +0.5666666666666567 + = +0.3500000000000000
11 11 17 7 3
4 4 g5 +11000000000000001 4 oo +1.1000000000000001 4 oo +0.8500000000000000 4 - =0.7000000000000000 4 5= +0.1500000000000000
29 27 1 17 2
§ 4+ 5 +14500000000000000 + S +1.3500000000000001 + 7 +1.0000000000000000 4+ - +D.5S00000000000000 + -~ +0.1500000000000000
7 29 21 1
6 4+ 7 +1.7500000000000000 + 35 +1.4500000000000000 + 3; +1.0500000000000000 + 7 +1.0000000000000000 + 55 +0.0500000000000000
27 29 1 21 1
7 45 +13500000000000001 4 o= +1.4500000000000000 4 o= +1.1000000000000001 4 S +1.0500000000000000 35 +0.0500000000000000
29 7 49 11 1
8+ 3 +1.4500000000000000 + 7 #1.7500000000000000 + o= +1.2250000000000001 + = +1.1000000000000001 + 7 +0.1250000000000000
29 19 a7 49 1
9 4 ; -22250000000000001 4 - +1.8999999999999999 4 - +1.3500000000000001 4 - +1.2250000000000001 + 3 +0.1250000000000000
93 2 7 27 1
10+ 5 +2:4750000000000001 + 5 +2.0000000000000000 7 +1.2999900099900099 4 oo +1.3500000000000001 + -~ +0.0500000000000000
11 + % +1.3999999959995998 4 % .22750000000000001 4 2 +1.4500000000000¢ I .139oco0008s0a0988 4 é +0.0500000000000000
2 99 0
12 T +2.0000000000000000 + 5 +2.4750000000000001 1.4500000000000000 + 7 =0.0000000000000000
> x5 =145 <> -Halt condition

21

is the first and only one for this sequence. Since the centre is on the left traveling to the right it approaches the
halt centre as more elements are added to the sequence. Once the centre reaches and absorbs the halt centre the
sequence halts as there are two equal medians one after another which by theorem 10 a) is the halt condition. The
software is able to produce data sheets similar to the one on figure 6 for any iteration allowing the observer to see
the Halt Kernel formation and the Centre traveling towards it and absorbing it. For some sequences the map may
generate additional halt kernels with smaller or larger value before it reaches any previously generated halt kernel.
In the previous example suppose that the value xg = 1.35 instead of 2.225, then we would have a new smaller
halt kernel generated just before to be absorbed by the centre and halt the sequence. For this map however the
next four values are xg = 2.225, x19 = 2.475, 217 = 1.8(9), x12 = 2.0 pushing the centre towards the halt kernel
K = {1.45, 1.45}. Finally 213 = 1.45 = M5 showing that the sequence was already halted by corollary 12 and
theorem 10.

Definition 18. Critical Distance A(zp_1, p, Zp+1) between three points x,_1 and x, determining M,,_; and M,
and xpy1 thus £p41 = M,, +n (M,, — M,,_1) is the distance determining if 11 < Zpy1 OF Tpy1 > Tpy1 -

Theorem 19. Let X, be a recursive sequence generated by the mean median map, then 3m € N s.t. Vn € N,
Ty < Ty, we define Tpmazimal = Tm-

Proof. Let X,, be a recursive sequence generated by the mean median map from starting set {z1, za,..., 23} and
suppose n > k + 1, then recall x,,.1 = M,, + n(M,, — M,,_1) is true by theorem 6. Define Base,, := M,, giving us
an insight for the meaning of the expression x,1 = Base, +n (Base, — Base,_1). Call the difference between two
consecutive bases A, = Base, — Base,_1, and we get x,, 11 = Base, + nA,. So the value of z, 1 depends on the

. . Centren| ~
Base,, and on the difference A\,, between two consecutive bases. Also recall M,, = W ZL—T ren| %, = Base,,
n -

is increasing. This implies that the falls in the X,, are due to a small distance A,, between the medians (i.e. between
the points determining them in the sorted sequence). In order to show that a maximal element exists will show
that the centre never reaches some element on the right-hand side in the ordered sequence. This would implies that
since the distances between the elements are limited the newly generated x,, are bounded.

Suppose that X,, has n < oo elements and m <n, t =1...n, then 3z,, € X, s.t. x,, > x¢. Then &, = x,, will be
the rightest element in the sorted sequence. Since by corollary 15 the centre is traveling to the right with half of
the speed of adding of new elements to the sequence, for the centre to reach the z,, the sequence must add L new
elements to the right of z,, where

L22xg+2xr:n+2xr7 (0.9)

where r is the number of elements added to the left of Z,, until the centre reaches Z,. It is therefore possible for
the centre to never reach ¥,. Since ¥, is the rightest, the next Base, 1 (i.e. M,) produced from X2°" will not
use it, except if n = 1 or 2 in which cases the sequence halts immediately and we are done by corollary 11. So the
next median, i.e. base is produced from some smaller 7, (, T,+1) in X;°"". So the base contribution for the new
ZTpy1 Will be smaller than the currently maximal element in the sequence. The second contribution factor is from
the difference A,, = Base,, — Base,_1 between the current and the previous bases.

1. Suppose A, is such that z,1 < x,, then the new z,,41 will be placed to the left of the maximal x,, in the sorted
sequence Xfff but to the right of the current median by lemma 16, so z,; will be positioned between some Z,
and Zq41, where ¢ > p (, p+ 1) and ¢+ 1 < n. This also implies that the r — count is increased by one and the
distance between some two points will be split into two smaller distances. In detail: if the following x,,14, t > 1 are

such that equation 0.9 is:

1.1. never satisfied we are done since the maximal so far x,, will remain maximal.

22

1.2. enough x, 4, are generated such that x, 1 becomes part of the centre at some [— th iteration in future. Since
ZTn41 is placed between some %, and %441 then the distance between the latter will be cut in two pieces. Now:

1.2.1. if A(Zq, pt1, Tg+1) is less than the critical distance then the generated z; will be positioned to the left of
Zq+41 thus injecting a new element to the right of the Base; (Base; is determined by &, and ,1), and since it
is injected to the left of x,, it increases r in equation 0.9 by at least two (one for z,+1 and one for z;). Also, the
distance between of z,,1 and 2,41 is now again cut in two parts by x;, thus further decreasing A; because clearly

8 <« nA.

1.2.2. if A(Zq, nt1, £g41) is larger than the critical distance then the generated ; will be positioned to the right
of Zg41, so:

1.2.2.1. x; may be the new largest value - in this case it will be ignored for at least L — many new elements by
equation 0.9, again also increasing the r — count by one.

1.2.2.2. #; will be positioned between Z,4iand Z44o thus increasing the r — count by least two (one for z,4; and
one for x;) and additionally cutting the distance between &, 1and Z,19 in two parts, as in 1.2.1.

So if x, 11 < x,, then in every case r increases by at least one, so at least two more elements are need to add to
the sequence (in addition to the already required number) on the right hand side of z,, (i.e. larger than z,, values)
before the centre could reach z,,, while at the same time the distance between two points have been split into two
distances and thus making the advances of two x;, x;1smaller instead of having one larger. So x,,+1 < x,, stabilizes
T, as a maximum.

2. Suppose that z,11 > x,, so now x,1 is the new maximal value. But it is not possible to have continuously
new largest values added to the sequence because largest value is determined by large base and large A,,, but the
largest x,, are ignored (because of sorting) for at least L new elements, so some smaller values are used for base
and A,. The newly generated values, as shown in (1) above, are then injected somewhere in the sorted sequence
to the right of the (base) median value used in their computation and to the left of the maximal values, further
introducing smaller bases and dividing any larger distance.

3. Suppose that =, 11 = x,, then:
3.1. if the centre never reach the z,,+1 = x, as placed in the sorted sequence we are done;

3.2. if the centre reach x,.1 = z,, as placed in the sorted sequence then the sequence halts by theorem 10 part a)
and we are done.

Since the median travels 1/2 of the speed of adding new values, and for every new z,,41 added to the sequence
smaller than the maximal:

a) two new values larger than the maximal will be needed to overtake it;

b) 2,41 divides the distance between the points between which it is injected in the sorted sequence and thus produce
two new smaller z,4; and x,,;11 since % < nA instead of just one larger x,,;. These two new smaller x,,;
and x,, ;41 promote further division by the same reason. Further for each smaller z,,,; two larger than the maximal
values are required by a) to compensate for it, which become increasingly difficult since the interval bcomes denser

and denser populated, with smaller and smaller distances between the elements.
So we have a continuously becoming denser area of elements, and for some large enough z,,, and large enough n,

but finite, n-times the distance nA,, between any two M, and M,,_; is insufficient to extend the base M, for the
next x,+1 beyond Z,, and thus &, becomes, (i.e. remains) the maximal element Z,,qzimai- O

23

Remark. Again, briefly when and why X, collapses: looking into figure 4 above clearly X,, is non-monotone. The
behaviour of X, is determined by the equation x,; = Base,, + n (Base,, — Base,,_1), where Base,, = M,,. Thus
Base,, is determined by C,, and Base,,—1 by C,,_1, so z,41 by three consecutive points in the middle of the sorted
sequence. When it so happens that the distance between the upper two points is smaller than the distance between
the lower two points X,, drops, that is x,,+1<z, . The exact drop depends mostly on the values of the three points
and to a lesser degree to how large n is.

Corollary 20. The sequense of medians (M) is bounded above by Tmazimai-

Proof. Follows immediately from lemma 16 and theorem 19. O

Corollary 21. The sequence X, — (M,,) as n — co.

Proof. Let X,, be a recursive sequence generated by the mean median map from starting set {z1, za,..., 2} and
suppose n > k + 1, then recall x, 1 = M,, + n (M, — M, _1) is true by theorem 6. Since (M,) is increasing by
theorem 4 and (M,,) is bounded above by %,qzima; then (M, — M, _1) — 0, so x,+1 — M, as n — co. O

Theorem 22. There exists least upper bound x), . . . for (M,,) such that Ty awimal < Tmazimal-

Proof. Suppose X,, contains enough elements so that n-times the distance nA, between any two M, and M,
is insufficient to extend the base M, for the next z,,1 beyond Z,, 50 T, = Tmazimal = Tiyawima- BUt since
the maximal is achieved all new elements added to the sequence are added to the left of Z, thus increasing the
density of elements between the centre and Z,,. When sufficient density is achieved the Z,,_; element in the sorted
sequence becomes unreachable for the same reasons as Z,, before it, so Z,,_1 becomes the new least upper bound,

8O TF i = Tp_1 < Ty, = Tmazimal- L he process of lowering the least upper bound continues:

1. If the sequence halts until the sequence halts in which case x} ... = Thaited.

2. If the sequence does not halt « .~ — M, as n — oo. O

Remark. Effectively, these are sequences attracting/pushing onto each other, on one hand M, is increasing (though
bounded above) pushing upwards, and on the other hand X, which is overall decreasing pushing down towards
M,,.

Theorem 23. X,, and M,, are Cauchy sequences.

Proof. If the sequence halts after finitely many iterations then the theorem is immediately true for both X, and
M,,. If the sequence does not halt then M, is a Cauchy sequence immediately from theorem 4 and corollary 20.
Then by corollary 21 X, is also a Cauchy sequence. O

Proposition 24. The weak terminating conjecture is true.

Proof. Follows immediately from corollary 20. O

24

Figure 7. Plot of sequences until they halt. All over 20,000 experiments yield similar results.

Starting Set (0, 0.514010, 1) - Halt Value = 1.083158, Ilteration Count =79
2 T T T T T T T T

1.8
16

14

12

1

0.8

0.6

Xn
Xn-Sort
— Mn

0_2 1 1 1 1 1 1 1 1
0 10 20 30 40 50 G0 70 80 30

04

Starting Set (0, 0.514007, 1) - Halt Value = 1.083058, lteration Count = 235

2

1.8

16

14

12

o

1

0.8

06

Xn
Xn-Sort | |
— Mn

04

0_2 1 1 1 1
0 50 100 150 200 250

Starting Set (0, 0.514055, 1) - Halt Value = 1.082310, Iteration Count = 551

Starting Set (0, 0.514086. 1) - Halt Value = 1.084875, Iteration Count = 1207

22 y
2t . 2t -
181 . 18+ -
161 ‘ . 16 i
14} ' | A 14F -
12f 4 / . 12 .
s J
1H . 1]
0.8F E 0.8 -
0.6 — 0.6 Xn i
04 XnSotH 04} rsert|
—— Mn
[]_2 1 1 1 1 T 0_2 1 L 1 L 1 L
0 100 200 300 400 500 600 0 200 400 600 800 1000 1200 1400
Starting Set (0, 0514241, 1) - Halt Value = 1.215274, lteration Count = 12819 Starting Set (0, 0.5614182, 1) - Halt Value = 1.083496, Iteration Count = 334569
2 T T T T T T 22T T T T T T T
2t § 2- .
18} 4 18- 4
16 4 18- .
14 4 14 g
12 12- 1
1} 4 1 .
08F 4 o8t J
06+ . 1 06 m o]
04l — Xn-Sort | | 04k Xn-Sort | |
— Mn Mn
02 1 1 1 1 L L 0_2 1 1 L L I I 5
0 2000 4000 6000 8000 10000 12000 14000 0 05 1 15 2 25 3 35x10

25

Remark. Although it may seem that the sequences have the same maximal value they in fact do not have the same
maximal value. Refer to figure 3 where is a plot of the sequence vs. the max value for 10000 sequences on the
interval 0.514 - 0.515.

Remark. Some halt kernels formed by the mean median map could be void, that is halt kernels with a value larger
than the least upper bound of the (M,,) sequence will be never reached and absorbed by the centre and thus could
never halt the sequence, and so are void.

Lemma 25. Let n > 2 and n-even, then M1 — Eny1 = M, — E,, and for all n > 0 and n-even, then
MnJrl - M, =M, - M, ;.

Proof. By theorem 7, M, 11 — E,+1 = M,, — E,, is the same as M .1 — M,, = M,, — M,,_1. Now, nisevenson=+1
is odd, so:

M1 = My =g = 5 (o +2541) = 3 [2541 — 74]

N[

My =My =3 (3 +23401) —Te-nn =5 [730 — 2] O

N |—=

Conclusion. The author believes that Strong Terminating Conjecture is true. The reasons for this belief are:

Clearly all points in the X,, and M,, sequences are linearly dependent. For example, consider the sequence with

starting set {0, 0.7, 1}. As we saw previously it halts in 12 iterations, in fact in 9 actual as the first three are building

the starting set. Expressing the two x,, values from the halt kernel by unwinding the recursive iterations that

produced them we have:

x5 =My +4(My— M) =3 (3 +I2) +4 (5 (T3 + Z2) — T2) = 383 — 30, =145

wg = Mq+T7 (Mg — Mg) = &4+7 (&g — 3 (24 + @3)) = 5 (924 — TZ3) = 5 (9[AM3 — S3] — T23) = 5 (9[4d2 — &3 — Tp — T1] — TZ3) -
—8%3 + ZLiy = 1.45

In addition to this observation we also observe that for every even n = 2k, k € N, the median definition divides
the sum between two elements of X,: M, —or = %(xi + x%H). On the other hand for every even n x,y; =
M, +n (M, — M,_1) =M, + 2k (M, — M,_1) (theorem 6) cancels that division. Also we note that this equation
is symmetric to the median definition for even n : My, —g = §(x3 +2241) =22 + 5(x2 — 2 41). Since all points
in X,, and M,, are linearly dependent, and since X,, and (M) are Cauchy sequences the X,, and (M) points get
arbitrarily dence as n — oo, as well as Q = (¢,), with Q,, = (x1, My, xo, My, x3, M3, ..., x,, M,) by corollary 21
and theorem 23. So we have arbitrarily dense sequences of linearly dependent points, where X,, (and @,,) are NOT
monotone. So it is plausible to expect that somewhere in the finite future an already generated value will emerge

again and thus create a halt kernel, repeating the process until a non-void halting kernel halt the sequence.
A few final thoughts that might be helpful:

1) We have an arbitrarily dense sequences of linearly dependent points, where X,, is NOT monotone. Also we have
the sequence halting for at least one starting set, say {0, 0.7, 1}, so if the median map represents a complete class
then it halts for all starting sets.

2) Periodic functions. Fourier analysis and convolution.

3) Chinese reminder theorem.
This project being a MSci thesis is time and resource constrained. Since the author has number of other modules

and obligations requiring his attention, regretfully he was unable to make a serious attempt to formalize the above
conclusion and transform it into a proof.

26

Part IV

Software

4.1 Object Specialization Model

We consider software modelling in object oriented environment, using C++ in particular.

It is not unusual for people to wonder why in the law of God lies are forbidden. One possible answer is that in
an absolute world lies cannot exist or if they exist in a world then that world is not absolute. This is so because
for a lie to exist it requires another lie to maintain it and thus if a lie is introduced then eventually the world
becomes entirely self-contradictory. Hence in the world of God, which by definition is complete and omniscient a
lie is impossible. Take this affirmation and translate is to the relation between a world that has been modelled by
software and the world of the software itself. The software must represent the universe of discourse precisely or if
this fails to be the case, then early or late there will appear one or more fundamental contradiction in it, which will
make the software eventually impossible to exist (live) - grow. This implies necessity for the software model to be
in one to one correspondence with the world that it describes, i.e. is to have no “lies” in it.

One of the implications of the above proposition is that names of variables must be precise. Comprehensive
namespace however is only possible within comprehensive model. On the other hand comprehensive model is not
possible without comprehensive namespace.

Suppose all variables in some software are named precisely with the names of entities that they precisely represent.
What makes it impossible to use two or more variables of the same type interchangeably but inappropriately?
Suppose that there are two Boolean variables representing the values of two unrelated propositions say: “Today is
Monday” and “Water flows”. Clearly they have nothing in common and must not be confused or mixed, however
since the two variables representing the propositions are of the same type it is possible to erroneously assign the
value of one of them to the other or use them in the same Boolean expression inappropriately, such as using the
incorrect variable in a function call or other. So although the variable names represent some entity precisely errors
are possible. These errors if misunderstood and corrected erroneously will lead to failure to maintain bijective
representation of the universe of discourse.

Thus we identified the existence of another dimension to each and every variable which is its context. The author
hereby proposes the idea to add a new dimension to objects, which would accommodate the information for context
of the variable. This information then can be used by the compiler to ensure that the variable is being used only
in the correct context, and if used improperly raise an appropriate error. Variables from different contexts could
be used cross-context only via appropriate explicit context conversion.

The property maintaining the context information must be part of the meta-space, as opposed to part of the object.
Thus the context of the object does not in any way alter the physical footstep of the object or its performance.
All context information, checks, conversion and other properties and information are maintained explicitly in the
meta-space and have no impact whatsoever on the compiled software and its performance.

In fact context already exist when considering types. The context of a type is defined by the namespace (if any)
where the type is defined or the container (if nested), its ancestors and the overload constructors, methods and
conversion operators. Presently context of variables also exist but only at physical level, which can be declaration
scope (stack frame), containing class (object) or both. This is why two variables of the same type existing in
compatible stack frames can be freely misused. The proposal in this paper is to add logical scope to variables, i.e.

27

context of objects, and thus prevent misuse in the same way as object from incompatible types cannot be misused
without explicit conversion.

Adding context to a variable must effectively modify the methods/conversion operators of the class of the variable
in a way so that there is a consistent behaviour. Ideally there would be native compiler support, where appropriate
syntax might be for example:

bool <~ ContextA ~> bObjectName1l;
bool <~ ContextB ~> bObjectName2;

It is possible to achieve variable specialization, i.e. attach context to variables with the facilities that C++ already
have, although dedicated native support would be preferable. By using template specialization and inheritance we
are able to achieve the required results. Consider the template class definition:

Listing 4. Template class achieving variable specialization using already available C++ facilities.
template< class classConstitution, class classContext > class specialize : public classConstitution

public:
class Init

public:
const classConstitution& obj;

public:
explicit Init(const typename classConstitution& obj) : obj(obj) {3}

private :
Init& operator=(const Init& objlnit)

obj = objlnit;
return(=this);
}:
static Init Initialize(const typename classConstitution& obj)

return(Init(obj));

specialize ()

H
specialize (const Init& obj) : classConstitution(obj.obj)
{
H
specialize (typename const specialize< classConstitution, classContext >& obj) : classConstitution(#(classConstitution*)&obj
{
H
typename specialize < classConstitution , classContext > operator=(typename const specialize< classConstitution, classContext >&
obj)
{
__super::operator=(obj);
return(=this);
H
// prohibited to prevent unwanted assignments.
// typename specialize< classConstitution, classContext > operator=(typename classConstitution& obj) { ... }
LR I
#define as
#define by
#define of

An object from this type specialized with a type that we want to be intrinsic for the object and a second type giving
the context is in fact a variable of the intrinsic type specialized with the context type, which is our objective. An
object defined and specialized with the help of this template is less attractive than native implementation would
be but still gives the required results:

specialize < bool, ContextA > bObjectNamel;
specialize< bool, ContextB > bObjectName2;

28

Figure 8. Class diagram of the specialize< parameters > template.

At

|

(specialize < classConstitution, classContext> |
Template Class
=+ classConstitution

= Methods
W Initialize
% operator=
% specialize (+ 2 overloads)

W classConstitutionObject
B Mested Types

)

| Init
Class

= Fields
E obj
= Metheds

W Init
&" operator=

In the template definition above we only allow one directional assignment, which may seem overly strict but as
we shall see it is necessary. The problem may seem to be that assignment such as: bObjectNamel = true/false;
generates error since the compiler does not know how to assign the reference-able (R) value to the locatable (L)
value. Adding the banned operator= resolves this issue (in fact not an issue); however this clears the path for
assignments such as: bObjectNamel = bObjectName2;.

This would defeat the purpose of the additional abstraction that we aim to introduce. Through the implied con-
version to the ancestor type allowed by the public visibility of the superclass, and then through the overloaded
assignment operator of the specialiser class the compiler quietly assigns incompatible-by-specialization (but com-
patible by type) variables, through the common superclass. Thus to break the chain we either have to disable
the implied conversion or to remove the compatible function overload, or both. When working with existing code
there would be many instances of objects from the superclass already existing in the code as well as functions
with parameters of the superclass. Prohibiting the implicit conversion from specialized to non-specialized objects
(i.e. to the superclass) would lead to cumbersome programming due the necessity for explicit conversion for every
assignment or use of specialized type where non-specialized is expected. On the other hand it is most important to
ensure that invalid assignment is impossible. Thus the solution is to maintain public inheritance of the superclass
and prohibit all compatible operators and methods. We therefore remove the compatible operator overload and
constructor which ensures an error in the assignment: bObjectNamel = bObjectName2;.

The removal of the compatible assignment operator however is the reason for impossibility of an assignment of
object of the superclass:

bObjectNamel = true; // generates error
bObjectName2 = false; // generates error

We cannot introduce a constructor with appropriate type to initialize the specializer as this will lead to the same

problem as with the dedicated operator=, namely bypassing the context-wall which we aim to create. This we
introduce the auxiliary type Init and helper function Initialize(...) to help the initialization:

29

bObjectNamel = specialize < Bool, ContextA >::Init(true);

bObjectName2 specialize < Bool, ContextB >::Ilnit(false);

// or

bObjectNamel = specialize < Bool, ContextA >::Initialize(true);
bObjectName2 = specialize < Bool, ContextB >::Initialize(false);

Remark. We do not make distinction between built-in type and user-defined type. For the purposes of this proposal
we shall supply a wrapper class to any used build-in type in order to maintain consistency.

Definition 26. Context Specialized Type or just Context Type is a type composed by two or more types (possibly
context specialized) and is constructed in the metaspace explicitly when declaring an object thus defining its
type. The first of these types called constitution-class (or superclass, or type-class), determines the character and
behaviour of the object, thus the object “is of” that type. The remaining one or more types called context-class(es)
determine the relationships which the object could have, i.e. its context.

Example. Using classes bool and Colour we define specialized types:

bool <~ Color ™> boolMyPulloverBlue;
Color<™ bool ~> arghColorSuitable;

Using the above template implementation:

specialize < Bool, ContextA > bObjectNamel(specialize < Bool, ContextA >::lInitialize(true));
specialize< Bool, specialize< ContextA, ContextB > > bObjectNamel(specialize< Bool, specialize< ContextA, ContextB > >::
Initialize (true));

Remark. The definition of Context Specialized Type does not in any way restrict the complexity of the constitution
and context classes.

Consider the task to place the type of a file in a string. Some software architects may take the approach to specialize
a type i.e. derive a type e.g.:
class FileTypeDescription : public string

// do almost nothing here, most work is in the base class

}s

In practice almost all architects will simply use the string class just as it is. To use the context specialization
methodology however we can create an auxiliary type with an absolutely empty content e.g.:
namespace sX

class FileTypeDescription { /#nothings/ };

Then simply context specialize the string object with it, achieving the desired result:

specialize <string ,sX:: FileTypeDescription> strType(specialize <string ,sX:: FileTypeDescription >::Initialize (TEXT("Fileotype")));

To improve readability we define pre-processor syntax definitions for appropriate prepositions such as "as” and “by”
with coma, thus from now on we shall use the appropriate preposition instead of coma in order to improve readability.
It is a good practice to declare empty context-classes declared for the sole purpose to help constituting of Context
Specialized Types in a dedicated namespace, thus separating them from the rest of the model. By convention this
name space is called sX. Clearly using auxiliary empty context-classes is wrong when there are proper non-sX classes
available in the model, which could be used as context-classes, or when an appropriate context could be assembled
from them. For example suppose that the non sX-classes FileType and Description exist. Then we could do the
same declaration as above as follows:

30

specialize< string as specialize< FileType by Description > > strType;

If there are classes File, Type and Description existing in the model, then we could construct the context:

specialize< string as specialize< Description of specialize< Type of File > > > strType;

In a comprehensive model most classes would exist as non sX, and very few sX classes will be required. When using
multi-layer specialization as in the above two examples there may rise some disputes as to which class should be
constitution-class and which context-class, e.g. should we have specialize< FileType, Description > or specialize<
Description, FileType >. Consider the following prototype:

Pair< specialize< Integer as Quotient >, specialize< Integer as Reminder > > Integer::operator /(Integer iDividend, Integer
iDivisor);
Now one need to define classes: class Quotient { ... } and class Reminder { ... } for this declaration to be

meaningful. On the other hand Quotient and Reminder are integers, so there is a legitimate question whether
defining class Quotient : public Integer { }; and class Reminder : public Integer {};, or even better template< class
T> class Quotient : public T {}; and template< class T> class Reminder : public T {}; is not better than using
the Object Specialization Model? Defining Quotient and reminder as templates may seem similar to the original
declaration, but they are clearly very different: specialize< Integer as Quotient > specializes an Integer variable
as quotient, that is limits its external friends and field of connections. The other however specializes the internal
nature of the type Quotient. The alternative to the original declaration is then: inline Pair< Quotient< Integer >,
Reminder< Integer > > operator /(Integer iDividend, Integer iDivisor);. At first glance this declaration will have
immediate consequences similar to the original one, provided that casting operators and implicit constructors are
unavailable, but in fact this is a wrong way to go. The reason is that the type Quotient is not restricted to only
the whole part of division, but in a larger generalization (besides general homonyms). Quotient can also be a set,
group, space, etc, and template specialization cannot truncate this larger generalized type to the small reminder
from division case. Further Quotient< double > is a self-contradictory statement however there is no intrinsic way
to prohibit such declaration, while Reminder< double > is perfectly all right. Quotient and Reminder are abstract
entities and when defined as types required careful attention. Thus the specializer approach above is the correct one
in this case. The analysis of this model could be further extended but will be omitted here. The most important
consideration as always is to maintain bijective relation between the software model and the Universe of Discourse.

Suppose there is an enumerator defined as:
enum Result

Success = 0,

Failed = 1,

Exception = 3

/7 -
}s

This scenario is not different than an integer int< Width > when there is a native support for the Object Special-
ization Model.

Result<™ sX::ltem > resultitem1;
Result<™ sX :: ltem > resultitem2;

However if we are using the substitute methodology we will have to define a class for each enumerator, which would
include the native enum and operate on its behalf. Use of template specialized with the enumerator or a declaration
map propagating the native enumerator might be useful to simplify the task in a generic way.

The Object Specialization Model brings several advantages to software that implements it:

1. Safer code — the object specialization model prevents use of incorrect variables when they are from the same
type but different contexts. Consider the following example form a commercial application:

31

bool Save(const bool bKeepOnTopC,
const bool bKeepOnTopO,
const bool bUseFullPath,
const bool bPreviewFile ,
const bool bShufflePlay ,
const bool bPlayNextDir,
const bool bLoopDirDirs) const throw();

Such functions with large list of parameters are not unusual in professional software development. Regardless
whether this large list of parameters is due to bad design or is indeed intrinsic for the function, the possibility for
an error using the incorrect Boolean value is there. To prevent from errors the software engineers are required to
invest extra effort. Using the object specialization model we transform the above function to a safe one as follows:

bool Save(const specialize < Bool, sX::OnTopCompDlg > bKeepOnTopC,
const specialize < Bool, sX::OnTopOpenDlg > bKeepOnTopO,
const specialize< Bool, sX:: UseFullPath bUseFullPath ,
const specialize< Bool, sX:: PreviewFile bPreviewFile ,
const specialize < Bool, sX:: ShufflePlay bShufflePlay |
const specialize < Bool, sX:: PlayNextDir bPlayNextDir ,
const specialize< Bool, sX:: LoopDirDirs bLoopDirDirs) const throw();

VVVVYV

In the next example we will protect the FILETIME members of a structure from the same type of error.
struct FileData

unsigned _ _int64 uiFileSize;
DWORD dwAttributes ;

specialize < FILETIME as sX::CreationTime > ftCreationTime;
specialize < FILETIME as sX::LastAccessTime > ftLastAccessTime;
specialize < FILETIME as sX:: LastWriteTime > ftLastWriteTime;

string strFilepath;

2. Descriptive self-explanatory code — the definition of a context specialized object it is not only the name of the
object but also the Context Type which carries additional information for the meaning and purpose of the variable.
Thus the code becomes much more readable and meaningful. In addition the type information, i.e. the constitution
and context classes’ information is also displayed by the Intelli-sense of the IDE and also in the watch windows of
the debugger making writing and debugging of code more efficient.

3. Expanding and structuring the namespace/type-space - this is an architectural benefit for the particular software
model being developed. Because of the context specialization, software architects now have more points and
relationships to base their models on and thus should have less number of failures in their attempts to achieve
bijective model. Generally, models always fail to be bijective and that is why fresh new versions of software are
developed. Consider the multibillion investments in Windows XP and the complete rewrite done for Windows 7.

4. Language function space expansion. Suppose the class:

class MyClass : public MyClassParent

/) ...

virtual bool operator == (const string& strFileNameToCompare) const;
3

is well defined and working on a whole hierarchy of types, with multiple instantiations and calls to the above
comparison operator. The passed as parameter string is interpreted as a filename and is used to compare the
content of the file with the content of the particular object invoking the method. Suppose that later one needs to
have another operator with the same prototype:

virtual bool operator == (const string& strStringToCompare) const;

32

but this time they want to compare the actual string with the content of the object. However since the prototype
is already used the new function cannot be implemented with the same prototype. Traditionally the solution
would be to add another parameter, thus changing the prototype, and clarifying to the compiler which function we
would like it to call. It is clear that such an approach is crude, but in this particular case it is not even possible
since operator== can have only one parameter. There are also other possible crude solutions, requiring flags,
initializations, definition of special unwanted types, etc. The Object Specialization Model however presents quick
and elegant solution. The solution of this problem using the suggested methodology is to specialize the parameter
of the function as follows:

class MyClass : public MyClassParent
{
/7 -
// original declaration — could be also kept if wanted.
// virtual bool operator == (const string& strFileNameToCompare) const;

// modified original declaration.
virtual bool operator == (const specialize< string as sX:: FileName >& strFileNameToCompare) const;

// The newly added function.
virtual bool operator == (const specialize< string as string >& strStringToCompare) const;

Now, should one desire they could specialize the parameter as they wish, including multi-level (nested) specialization
if the universe is discourse that they work with requires it.

5. Context overloading — Inspired by the above methodology the Object Specialization Model allows a new third
way of method overloading. The two other methods are:

a) Overwriting — when using polymorphic functions with the same prototype;
b) Overloading — when using functions with the same type but different parameter list.
And now the third way:

c¢) Context overloading — works on both polymorphic and non-polymorphic functions with the same name and the
same parameter list where only the context-class of one or more parameters is different than that of any other
overload. Example: the following three context-overloads are well defined overloads which will be distinguished by
the compiler and called as appropriate according to the type of the second parameter of the call.

void MyClass:: MyFunction(int, specialize< string , sX:: FileName >&);

void MyClass:: MyFunction(int, specialize< string , sX:: FolderName >&);
void MyClass:: MyFunction(int, specialize< string , string >&);

We finish the Object Specialization Model with a note that in some cases specialization may be needed on a verb
as opposed to a noun. That is the constitution-class represents a verb or other type of entity instead of a noun as
usual. The same is also true for the context-class. Given the ability to construct multi-layer (nested) Specialization
Types this implies that an object could have Specialization Type which (literally) (re)presents a complete or partial
sentence and if necessary even a paragraph, chapter or novel.

The Object Specialization Model is available from http://www.MBBSoftware.com/Software/0ObjectSpecializationModel/
Default.aspx under the MIT Open Source Software License Agreement. Future updates and development on the

Object, Specialization Model will be published at that address. The source code that follows is used in the Mean

Median Map and in the examples of the above description.

33

Listing 5. Implementation of the Object Specialization Model using templates and inheritance.

//

//

// Specialize.h: Type Specialization definitions as example of implementation of:
//

// Object Specialization Model - Implementation Example One

//

// © Copyright 2009 - 2011 by Miroslav Bonchev Bonchev. All rights reserved.

//

//

//**

// Open Source License - The MIT License

//

//

// {your product} uses the: Object Specialization Model - Copyright © 2009 - 2011 by Miroslav Bonchev Bonchev. All Rights Reserved.
//

// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
// associated documentation files (the "Software"), to deal in the Software without restriction,
// including without 1limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:

//

// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.

//

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
// NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

//
// This software is OSI Certified Open Source Software.
// OSI Certified is a certification mark of the Open Source Initiative.

#pragma once

#include "Common.h"

#define as ,
#define by ,
#define of ,

template< class classConstitution, class classContext > class specialize : public classConstitution

{

public:
class Init
{
public:

const classConstitution& obj;

public:
explicit Init(const typename classConstitution& obj) : obj(obj) {}

private:
Init& operator=(const Init& objInit) { obj = objInit; return(*this); }
s

static Init Initialize(const typename classConstitution& obj)

return(Init(obj));
}

specialize() {}

specialize(const Init& obj) : classConstitution(obj.obj) {}

specialize(typename const specialize< classConstitution, classContext >& obj) : classConstitution(*(classConstitution*)&obj) {}
typename specialize< classConstitution, classContext > operator=(typename const specialize< classConstitution, classContext >& obj)

__super::operator=(obj);

34

return(*this);

¥

// Need to add the full spectrum of operators in future.
typename specialize< classConstitution, classContext > operator!() const

return(specialize< classConstitution, classContext >(specialize< classConstitution, classContext >::Init(__super::operator!())));

}
typename classConstitution& GetConstitutionObject()

return(*this);

}
typename const classConstitution& GetConstitutionObject() const

return(*this);

}

s

class Bool

{

private:
bool b;

public:
Bool() : b(false) {}
Bool(const bool b) : b(b) {}
Bool(const Bool& b) : b(b) {}
Bool(const int ib) : b(© != ib) {}
~Bool() {}
Bool& operator=(const bool b) { this->b = b; return(*this); }
Bool& operator=(const Bool b) { this->b = b.b; return(*this); }
Bool& operator=(const int ib) { this->b = @ != ib; return(*this); }
bool operator==(const bool b) const { return(this->b == b); }
bool operator!=(const bool b) const { return(this->b !=b); }
Bool operator==(const Bool b) const { return(this->b == b.b); }
Bool operator!=(const Bool b) const { return(this->b != b.b); }
Bool operator!() const { Bool bl(!b); return(bl); }
operator bool () const { return(b); }
operator bool& () { return(b); }

s

namespace sX

{
class FileTypeDescription {};
class FileName {};
class FolderName {};

class Description {};
class Type {};
class File {};
class Item {};

class CreationTime {};
class LastAccessTime {};
class LastWriteTime {};

class OnTopCompDlg {};
class OnTopOpenDlg {};
class UseFullPath {};
class PreviewFile {};
class ShufflePlay {};
class PlayNextDir {};
class LoopDirDirs {};

class Numerator {};
class Denominator {};
class Quotient {};
class Reminder {};

b

35

4.2 Proper Numbers Library

The Proper Numbers Library is a small, efficient and fast set of C++ classes that allows representation of arbitrarily
large integer numbers and arbitrarily precise rational numbers. It is easy to be integrated in any C+-+ project
and used as if the classes defined in it are native for the language. The name “Proper” comes from the proper
behaviour of the numbers that constitute it, and in particular the even distribution of rational numbers, and
other "proper” features. In order to enforce stricter Object Oriented compliance some standard operators such as
implicit conversion to Boolean values are not defined. For the needs of the Mean Median Map the classes need
no complex mathematical functions such as sine, cosine, roots, logarithm, etc. thus there are not such functions
presently defined. However, for the most common and usual uses the classes offer the required functionality and
basic arithmetic operators. The library is published under the MIT Open Source Software License Agreement,
and can be downloaded from http://www.MBBSoftware.com/Software/ProperNumbersLibrary/Default.aspx.
Future updates and development on the Proper Numbers Library, such as adding more mathematical functions and
additional types of numbers will be published at that address.

4.2.1. The Integer Class

The Integer class represents unsigned integers with arbitrary precision. Objects from this type expand arbitrarily
large up to available memory and are able to accommodate arbitrarily large numbers (up to the available memory).

Integers in a digital computer are manipulated by bit fields called registers able to do bitwise operations and
operations on the whole field, such as ADD (add), ADC (add with carry), SUB (subtract), AND (and), OR (or),
etc. called instructions. There are number of flags in the processor’s Control and Status register that signal or
indicate about different conditions that may have occurred. For example overflow after an addition operation.
Depending on the number of bits in the register it is a variable of type Zonumber—of—sits usually Zos, Zois, Zosz,
Zosa, etc. and operate in the respective modular arithmetic. High level languages utilize the processor registers to
perform arithmetic and other operations on the content of the memory. Integer variables in high level languages are
byte arrays with sufficient size located in the memory and are designated with its name in the metaspace. When
an integer variable is larger than the largest register able to perform integer operations the compiler/assembly
programmer uses typically a loop and the status flags applying the operation throughout the whole array working
in Zonumber—of—vits—in—variavie. Lhus if a variable is 128 bit (16 bytes) and the largest arithmetic register is 16 bit,
the compiler will place a function call for every arithmetic operation on the variable. In the body of function will be
a loop from 1 to 16 iterations using appropriate processor instructions on only 16 bits (2 bytes) at a time achieving
correct results in Zgi2s.

The Integer class from the Proper Numbers Library uses similar approach but instead using constant size arrays
to represents integers it uses a generic linked list. Each number is composited from one or more 64 bit words.
Arithmetic operations are implemented using set of appropriate fast algorithms. When operation is about to
produce a number with greater size then the current it is carried out adding more space to the number and thus
overflows do not occur. Hence the integer class represents N (up to the available memory in the system). Shift to
right and subtraction decrease the size of the number (object). Empty number is not allowed. Zero is represented
with one 64 bit word set to zero. The Integer objects are maintained normalized which for this class means that
there are no leading zeroed 64 bit words - except for the one zero word for the 0. When subtracting larger number
from a smaller one the result wraps up and has the size of the larger number. The decrement operator has unusual
behaviour - it does NOT decrement below zero to avoid ambiguity.

Remarkably, the Integer class is a specialization of a linked list of type MList< unsigned _ int64 >. When a

number is represented with an object of this type the underlying linked list is accelerated thus the words of the
number are accessed as an array achieving