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Part I

Introduction

The mean median map is a simple to de�ne function, which demonstrates very complex behaviour and spectacular
dynamics. The mean median map starts with a �nite sequence, which after number of recursive iterations always
seem to settle to some value. To settle to some value means that every new value produced by the map is the
same as the one before. The mean median map has been suggested by Schultz and Shi�ett Ref. [2] and has been
further investigated by number of mathematicians, including Chamberland and Martelli Ref. [1]. These authors
have proposed number of conjectures regarding the nature and behaviour of the mean median map. The author of
this paper will answer to some of the questions which they raise. For example in Ref. [1] Chamberland and Martelli
notice a remarkable coincidence of a double occurrence of the settling value some time before the settling occurs.
These 'miraculous' appearances seem to occur randomly. This paper will demonstrate that in fact in order for the
sequence to settle there must be such double occurrence and in fact that this is the condition for settling of the
sequence. Although relatively rare there are many sequences in which the repeated settling value occurs three or
more times before the sequence settles. It will be also demonstrated that these occurrences need not be isolated
or unique, and that in fact the settling value is the smallest value of all such repeated values. For the successful
outcome of this investigation it was necessary for the author to develop substantial amount of software, which is
intricate to, and undividable part from the problem solution and therefore it is presented in the paper as integral
part of it.

The positive outcome of this investigation was mostly due to the complementary and mutually bene�cial use of
mathematics and computer science. To write the software required to help the investigation the author had to �rst
deduce and prove the sequence settling condition. Clearly two or more equal consecutive values produced by the map
are necessary but not a su�cient condition to say that the sequence is settled to that value. Hence mathematics
produced the important theorem that allowed the software to produce settling values at all, i.e. a terminating
condition. On the other hand the powerful and �exible software written for this project allowed the author to produce
a large number of converging experiments which allowed important observations and inspired number of theorems.
These theorems on the other hand then allowed the software to be improved, thus a later version of the software using
them is approximately ten times faster than the previous versions not using them, which in turn allowed even more
experiments. However, the more important contribution of computer science to this project was the perspectives
that it brought to the table allowing the decomposition of the problem to a lower level of what mathematics usually
settles for, and allowing the author to see the intricacy of the map and explain it functioning. In particular these were
the de�nitions of the Sorted Sequence, Centre of the Sorted Sequence, Halt Kernel, Critical Distance and others. In
addition to these abstract de�nitions in order to be able to compute the settling value of the map for an arbitrary
rational number the author had to develop an arbitrary precision rational numbers since the �oating point numbers
are unable to satisfy the conditions for absolute precision. Arbitrarily precise rational numbers however are only
possible after �rst creating arbitrarily large integer numbers. Starting the project with rational numbers de�ned
over 64 bit integers for both the numerator and the denominator it became soon clear that much larger precision
is required. This lead to the development of an arbitrarily large integer numbers which were used to replace the 64
bit integers in the de�nition of the rational numbers. On average rational numbers based on 64 bit numerator and
64 bit denominator over�ow after about 100 iterations of a non-setteled map, compare this to the 334,562 iterations
required for the map to settle when the starting sequence is (0, 5141309/9999000, 1). The software was later
expanded to use quadratic irrational and other irrationals with similar form. The generic numbers developed for this
project are now aggregated in a generic numeric library called Proper Numbers Library. The Proper Numebrs
library o�ers arbitrarily large integer numbers, arbitrary precise rational numbers and a set of irrational numbers
with the form of quadratic irrationals. It is published under the MIT Open Source Software License Agreement, can
be downloaded from http://www.MBBSoftware.com/Software/ProperNumbersLibrary/Default.aspx and freely
used by mathematicians, computer scientists and software engineers.
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In addition to the insights about of the median map and although not necessarily related to it, this paper also
introduces a new software methodology called Object Specialization Model. The author developed the Object
Specialization Model previously, but due the tight time frames for this investigation it was used in the developed
software in order to achieve (a) faster devleopment with less errors and (b) more coherent code and in particular
better Proper Numbers Library. Since the Object Specialization Model is a new concept, published here for
�rst time it is necessary to be explained. The Object Specialization Model makes software development more
comprehensive and at the same time faster due reducing the possibility for making errors. This is achieved by
adding context to objects (variables) and thus making impossible to miss-assign variables, which is one of the
common mistakes during software development. For example, consider the two sequences used in the median map:
the sequence of values that are produced by the map and the sequence of the same values but sorted in ascending
order. Generally, the two sequences are from the same type, say Rational, so the author could easily make the
mistake to add a value to the wrong sequence. This would lead to investigating a di�erent map, with di�erent
properties and invalid for the mean median map results until the error is located and corrected. By using the
Object Specialization Model however the author adds context to each of the sequences, which makes any such
invalid assignment or arithmetic operation intrinsically impossible. A simpler to understand example would be the
following one: suppose that there are two Boolean variables representing the values of two unrelated propositions
say: �Today is Monday� and �Water �ows�. Clearly they have nothing in common and must not be confused or
mixed, however since the two variables representing the propositions are of the same Boolean type it is possible to
erroneously assign the value of one of them to the other or use them in the same Boolean expression. The Object
Specialization Model makes such errors impossible. The Object Specialization Model has additional architectural
bene�ts such as expanding and structuring the namespace and language syntax function space expansion which is
otherwise impossible and others. The Object Specialization Model requires no additional programming, presents
no performance overhead, but requires somewhat more typing. It is available from http://www.MBBSoftware.com/

Software/ObjectSpecializationModel/Default.aspx under the MIT Open Source Software License Agreement.
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Part II

Background and Conjectures

To understand the nature and behaviour of the Mean Median Map the author developed fair amount of software
and applied formal software development techniques. It is important to stress that in this paper the software
development is not a serf with void signi�cance of its implementation. Quite to the contrary, formal methods
and approaches from computer science and mathematics �ow freely in both directions and are equally important.
Precisely this approach is what allowed the author to comprehend the nature of the mean-median map functions.

2.1. De�nition of the problem

The median of a set Sn = {x1, x2, x3, . . . , xn}, where x1 ≤ x2 ≤ x3 ≤ . . . ≤ xn, is de�ned (traditionally) as

median(Sn) :=

{
xn+1

2
, n− odd

1
2 (xn

2
+ xn

2 +1), n− even
.

for simplicity the median will be denoted as

M(Sn) := median(Sn) ,

and when there is no ambiguity as
Mn := median(Sn) .

De�nition. The recursive sequence X is denoted as

X = (xn), with Xn = (x1, x2, ..., xn),

where xn is de�ned as the solution of the mean-median equation

x1 + x2 + x3 + . . . + xn

n
= Mn−1 , (0.1)

and is speci�ed by a list of initial values x1, x2, ..., xn−1.

The following de�nition is required by the necessity of the existence of the object that it describes in any software
model attempting to implement Xn as de�ned above.

De�nition. The sequenceXsort
n is obtained fromXn by arranging its terms in ascending order such that x̃n ∈ Xsort

n ,
where x̃i ≤ x̃i+1 for all i, 0 < i < n using the function

Ξ : R×Xn → Xsort
n . (0.2)
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In particular after each iteration and generation of a new xn ∈ Xn, xn is also placed in ascending order as x̃k ∈ Xsort
n ,

k≤ n by the sorting function. The function Ξ is essentially a permutation on Xn de�ned by ascending in R order.
The use of tilde instead of superscript to denote the elements of the ordered sequence is in order to reserve the

superscript for use allowing distinguishing between the elements of di�erent iterations x
[n]
k , where k ≤ n and [n]

denotes the iteration count i.e. the number of elements in Xn and respectively x̃
[n]
k for Xsort

n .

The sorted sequence is necessary to compute the median. Normally its existence is understood as implied, overlooked
and largely ignored.

De�nition. A sequence Xn produced by the rule 0.1 is said to be halted if ∃j ∈ N, ∀k ∈ N, k > j, s.t. xj = xk,
and xj is called halt value.

The sum of all elements of the sequence is:

Sn =

n∑
i=1

xi .

The mean value (expectation) of the sequence is given by:

En =
Sn

n
=

1

n

n∑
i=1

xi .

Using this notation we can now express the de�nition 0.1 of the sequence Xn in the following equivalent ways:

xn+1 = (n + 1)Mn −
n∑

i=1

xi = (n + 1)Mn − Sn = (n + 1)Mn − nEn (0.3)

2.2. Conjectures

Chamberland and Martelli have formalized the following conjectures.

Conjecture 1. (Chamberland and Martelli - 2007 (Conjecture 2.1)). Strong terminating conjecture

For every �nite non-empty set S ⊂ R, there exists an integer k such that the associated in�nite sequence satis�es
xj = xk, for all j > k. In other words the sequence of the terms settles permanently (halts) to the median after
�nite number of mean-median iterations.

The author of this paper believes that the Strong Terminating Conjecture is true. Since Chamberland and Martelli
have used the software package Maple for their investigation, it is likely that they have experienced problems to
observe Xn settling for some particular rational numbers. Maple is an interpreter and runs signi�cantly slower
relative to compiled and optimized code such as the one created for this investigation. In addition since the number
of iterations before the sequence settles is unknown, when using Maple, one would need to allocate signi�cant
amount of system memory in order to ensure that there will be enough space for all elements of the sequence in
the data containing structure. Hence su�cient amount of system memory for some sequences may have not been
available to them at the time of their research. The author of this paper has observed cases when the allocated
system memory for certain sequences has been larger than 5 GB, an amount of memory not commonly available
in previous years. Further certain theorems suggested in this paper are required to accelerate the computations.
Finally the machine used by the author of this paper is of order of magnitude faster than a common PC presently
and it is likely to have been also much faster than the machines available to Chamberland and Martelli. In all
these conditions of compiled, and optimized as both algorithms and as compilation code running on a particularly
fast computer it took several days for some sequences to halt. Chamberland and Martelli suggested the following
weaker conjecture.
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Conjecture 2. (Chamberland and Martelli - 2007 (Conjecture 2.2)). Weak terminating conjecture

For every �nite non-empty set S ⊂ R, the limit of medians is �nite.

Conjecture 3. (Chamberland and Martelli - 2007 (Conjecture 2.3)). Continuity conjecture

The function M is continuous.

While it seems that this conjecture is also true the author will not take position on it in this paper.
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Part III

Results

We will begin with the following fundamental theorem:

Theorem 4. (Chamberland and Martelli - 2007 (Theorem 2.1)). The sequence of medians is monotone.

Proof. Starting with Sn = {x1, . . . , xn} ⊂ R,we have

x1 + · · ·+ xn + xn+1 = (n + 1) Mn.

The next iteration produces
x1 + · · ·+ xn + xn+1 + xn+2 = (n + 2) Mn+1.

Subtracting yields
xn+2 = (n + 1) [Mn+1 −Mn] + Mn+1. (0.4)

If Mn+1 ≥ Mn, then xn+2 ≥ Mn+1, which in turn forces Mn+2 ≥ Mn+1 by de�nition of median. This process
may be continued inde�nitely producing a sequence of medians which is monotonically non-decreasing. Similarly,
if Mn+1 ≤Mn, the sequence of medians is non-increasing.

The following de�nition is a direct consequence from formal methods used in software development.

De�nition. The centre Cn of the �nite sequence XSort
n is de�ned

Cn := {x̃k : k ∈ Kn}, (0.5)

where Kn is a sequence of indices de�ned as follows:

Kn :=


n+1

2 , if n is odd and Xn is not halted
n
2 ,

n+1,
2 if n is even and Xn is not halted

(j : xj = Mn), if Xn is halted

.

In computational form the elements of a non-halted sequence that constitute the centre is

Kn :=

{
1

2
[(n + 1)− (n + 1)mod 2] ,

1

2
[(n + 1) + (n + 1)mod 2]

}

and the median de�ned using the centre is

Mn =
1

|Kn|

|Kn|∑
k=1

x̃k =
1

2

[
x 1

2 [(n+1)−(n+1)mod 2] + x 1
2 [(n+1)+(n+1)mod 2]

]
.
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Remark. Informally, the centre of a sequence consists from the elements of the sorted sequence which are used to
compute the median. When the sequence is halted then the centre consists from all elements equal to the median.

Fact 5. (Chamberland and Martelli - 2007 (3. Three Initial Points)). The dynamics of the set S = {a, b, c}, with
a ≤ b ≤ c, are equivalent to those of {0, x, 1}, where x ∈

[
1
2 , 1

]
.

Proof: Ref.[1]

Note. W.L.O.G., this fact will be used from now on and also base the software on it. This implies that from now
all sequences are Mn- increasing sequences, however the results apply to all sequences.

The following excerpt of source code is the main loop of the �rst revision of a function instantiating the mean
median map. This code generates the Xn sequence and the auxiliary XSort

n sequence. Later this code will be
optimized to incorporate theorems to be discussed. For this reason it is only the most essential loop that is included
here omitting the trivial details. The source code is self-explanatory and will not be commented on, but note the
implied de�nition of the Centre of the sorted sequence through the coe�cients identifying it. Also note that the
loop terminating condition is speculative, with very low probability of error. The �rst most important objective is
identifying the appropriate loop terminating condition. The object specialization is discussed in the later chapters.

Listing 1. First revision of the main loop of a function instantiating the mean median map.

w h i l e ( ! AreTheLastTwoHundredXnTheSame ( ) )
{

MEDIAN_TYPE mtMed_n_plus_1( 0 ) ;
MEDIAN_TYPE mtX_n_plus_1 = ( l i s tXn_ByValue . GetCount ( ) + 1) * mtMed_n − mtSum_n ;

// Add the new Xn i n the t ime domain sequence .
l istXn_ByTime . AddTai l ( new s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Xn , C lock > >(

s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Xn , C lock > >:: I n i t i a l i z e ( mtX_n_plus_1 ) ) ) ;

// The new Xn i . e . X( n+1) i s now computed , I t i s not ye t i n j e c t e d i n the sequence but , I w i l l
// add "+1" to the c a r d i n a l i t y o f the sequence s to compute the c o r r e c t median i n d e x e s . This i s OK
// s i n c e I i n s e r t X( n+1) i n the sequence i n d e p e nd en t l y o f the new median computat ion .
c o n s t DWORD dwSequenceCount ( l i s tXn_ByValue . GetCount ( ) + 1 ) ;

c o n s t DWORD dwMedIndexA ( ( dwSequenceCount + 1 − ( ( dwSequenceCount + 1) & 0x01 ) ) / 2 ) ;
c o n s t DWORD dwMedIndexB ( ( dwSequenceCount + 1 + ( ( dwSequenceCount + 1) & 0x01 ) ) / 2 ) ;

MList< s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Xn , Value > > >::MP< s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Xn , Value > > >* pMP(
l i s tXn_ByValue . GetHeadMP ( ) ) ;

// I n s e r t dX_np1 i n the sequence and f i n d the new Median .
f o r ( DWORD dwIndex = 1 , dwCond i t i ons = 0 ; (0 x00000003 != dwCond i t i ons ) && (NULL != pMP) ; dwIndex++ )
{

i f ( (0 == (0 x00000001 & dwCond i t i ons ) ) && (mtX_n_plus_1 <= *pMP−>GetObject ( ) ) )
{

// I n s e r t median he re .
pMP = l i s tXn_ByValue . AddBehind ( pMP−>GetPrev i ou s ( ) ,

new s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Xn , Value > >(
s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Xn , Value > >:: I n i t i a l i z e ( mtX_n_plus_1 ) ) ) ;

dwCond i t i ons |= 0x00000001 ;
}

i f ( dwMedIndexA == dwIndex )
{

mtMed_n_plus_1 = *pMP−>GetObject ( ) ;
}

i f ( dwMedIndexB == dwIndex )
{

mtMed_n_plus_1 += *pMP−>GetObject ( ) ;

mtMed_n_plus_1 /= 2 ;
dwCond i t i ons |= 0x00000002 ;

}

pMP= pMP−>GetNext ( ) ;
}
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i f ( dwSequenceCount != l i s tXn_ByValue . GetCount ( ) )
{

// The mtX_n_plus_1 has not ye t been added .
l i s tXn_ByValue . AddBehind ( l i s tXn_ByValue . GetTailMP ( ) ,

new s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Xn , Value > >(
s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Xn , Value > >:: I n i t i a l i z e ( mtX_n_plus_1 ) ) ) ;

}

mtSum_n += mtX_n_plus_1 ;
mtMed_n = mtMed_n_plus_1 ;

l i s tM e d i a n s . AddTai l ( new s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Mn, Clock > >( s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Mn, C lock >
>:: I n i t i a l i z e ( mtMed_n ) ) ) ;

}

Theorem 6. Suppose the sequence Sk = {x1, x2, . . . , xk} is a starting set for the recursive sequence Xn . Then
for all n > k + 1, xn+1 = Mn + n(Mn −Mn−1).

Proof. By de�nition we have xn+1 = (n + 1)Mn − Sn = (n + 1)Mn − xn − Sn−1, but xn = nMn−1 − Sn−1, so:

xn+1 = (n + 1)Mn − [nMn−1 − Sn−1]− Sn−1 = (n + 1)Mn − nMn−1 + Sn−1 − Sn−1,

and

xn+1 = (n + 1)Mn − nMn−1. (0.6)

Rearranging the brackets and we get:

xn+1 = Mn + n (Mn −Mn−1) . (0.7)

Now, suppose n+ 1 = k + 1, then we can de�ne Mn ≡Mk, however we cannot de�ne Mn−1 ≡Mk−1 since xk ∈ Xk

is independent by assumption. So the for n + 1 = k + 1, xn+1 = Mn + n (Mn −Mn−1) is not well de�ned. Finally,
suppose xn+1 ≡ xk+1 is determined by de�nition 0.1, then for n ≥ k + 2 we have both Mn and Mn−1 well de�ned
and so the formula xn+1 = Mn + n(Mn −Mn−1) is well de�ned for all n > k + 1.

Note. This form of the sequence generation law is more useful to understand the problem and will be used more
often than the original form.

Theorem 7. For all n ∈ N, En+1 = Mn.

Proof. By de�nition of En and Sn we write:

En+1 =
Sn+1

n + 1
=

xn+1 + xn + Sn−1

n + 1
.

From equation 0.6 we express xn+1 = (n+ 1)Mn−nMn−1 and from equation 0.3 we express xn = nMn−1−Sn−1.
Substituting in the equation above we get:

En+1 =
1

n + 1
[((n + 1)Mn − nMn−1) + (nMn−1 − Sn−1) + Sn−1] .

Expanding the brackets and simplifying yields:

11



En+1 =
1

n + 1
[(n + 1)Mn] ,

which after cancellation gives the required result:

En+1 = Mn .

Corollary 8. En is monotone.

Proof. Mn is monotone by theorem 4. En+1 = Mn by theorem 7, so En is also monotone.

Lemma 9. For all n ≥ 1, Mn = En ⇒ xn+1 = Mn = En.

Proof. From equation 0.3 we write xn+1 = (n + 1)Mn − Sn = (n + 1)Mn − nEn = nMn − nEn + Mn = Mn.

Theorem 10. Suppose that for some n ≥ 1, Mn = Mn+1. Then, for all t ∈ N the following hold:

a) Mn = Mn+t

b) xn+2+t = Mn

c) Mn+1 = En+1

Proof. a) From the de�nition of the sequence:

xn = nMn−1 − Sn−1

so the n-th and (n + 1)-st medians are therefore Mn = Sn+xn+1

n+1 and Mn+1 = Sn+1+xn+2

n+2 . Since Mn = Mn+1,

Sn + xn+1

n + 1
=

Sn+1 + xn+2

n + 2

so
Sn

n + 1
+

xn+1

n + 1
=

Sn+1

n + 2
+

xn+2

n + 2

but
Sn+1 = Sn + xn+1

and therefore
Sn

n + 1
+

xn+1

n + 1
=

Sn

n + 2
+

xn+1

n + 2
+

xn+2

n + 2
.

Multiplying both sides by (n + 1)(n + 2), we obtain:

(n + 2)Sn + (n + 2)xn+1 = (n + 1)Sn + (n + 1)xn+1 + (n + 1)xn+2.

Solving for xn+2, and simplifying, we obtain:

xn+2 =
Sn + xn+1

n + 1
= Mn = Mn+1. (0.8)
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Now, informally, since xn+2 = Mn = Mn+1, it follows that xn+2 will lie between x̃n+1 and x̃n, i.e., it will become

an element of the centre, which implies that Mn+2 = xn+2 = Mn+1 = Mn.

Formally, since Mn = Mn+1 :

- If n is odd, then x̃
[n]
n+1
2

= Mn = Mn+1 = 1
2

(
x̃

[n+1]
n+1
2

+ x̃
[n+1]
n+1
2 +1

)
,

but x̃
[n]
n+1
2

= x̃
[n+1]
n+1
2

or x̃
[n]
n+1
2

= x̃
[n+1]
n+1
2 +1

, so x̃
[n]
n+1
2

= x̃
[n+1]
n+1
2

= x̃
[n+1]
n+1
2 +1

, where x̃
[n]
n+1
2

∈ Cn and x̃
[n+1]
n+1
2

, x̃
[n+1]
n+1
2 +1

∈ Cn+1

are the only elements of Cn and Cn+1 respectively.

- If n is even, then 1
2

(
x̃

[n]
n
2

+ x̃
[n]
n
2 +1

)
= Mn = Mn+1 = x̃

[n+1]
n+1
2

,

but x̃
[n]
n
2

= x̃
[n+1]
n+1
2

or x̃
[n]
n
2 +1 = x̃

[n+1]
n+1
2

, so x̃
[n]
n
2

= x̃
[n]
n
2 +1 = x̃

[n+1]
n+1
2

, where x̃
[n]
n
2
, x̃

[n]
n+1
2

∈ Cn and x̃
[n+1]
n+1
2

∈ Cn+1 are the only

elements of Cn and Cn+1 respectively.

Considering equation 0.8 we write xn+2 = Mn = Mn+1 = x̃m = x̃m+1 for some m < n in the sorted sequence where
x̃m, x̃m+1 ∈ C respectively. This however implies that xn+2 will be placed just next to x̃m = x̃m+1 in Xsort

n , hence:

- if m, m + 2 are odd, then Mn+2 = x̃m+2 = Mn+1 = Mn;

- if m, m + 2 are even, then Mn+2 = 1
2 (x̃m+1 + x̃m+2) = x̃m+1 = Mn+1 = Mn.

So Mn+2 = Mn+1 = Mn. Let m = n + 1,then Mm+1 = Mm then the argument repeats and we get Mm+2=n+3 =
Mn+2 = Mn+1 = Mn. Then given any t ∈ N the argument repeats t times and we have Mn+t = Mn.

b) From part a) we have that if Mn = Mn+1 then Mn = Mn+t for all t ∈ N. Suppose then the condition is met

and let n be such that for all t ∈ N Mn = Mn+t. Then by theorem 6 we have:

xn+2+t = (n + 1) (Mn+1+t −Mn+t) + Mn+1+t ,

but Mn = Mn+t, so Mn+1+t −Mn+t = 0, so

xn+2+t = Mn+1+t = Mn for all t ∈ N .

c) Immediately from theorem 7 En+1 = Mn, since Mn = Mn+1 it follows that En+1 = Mn+1.

Note. Theorem 10 gives the condition when the sequence Xn halts, which is Mn = Mn+1 and the halt value which
is h = Mn = Mn+1. Mn = En ⇒ xn+1 = Mn = En is by implication another halting condition, obviously it is
equivalent to Mn = Mn+1. The process of halting the sequence demonstrated chronologically is as follow:

1) Mn = Mn+1 = Mn+1+t, for all t∈ N

2) Mn+1 = En+1 = En+1+t, for all t∈ N

3) xn+2 = Mn+1 = xn+2+t, for all t∈ N.

13



Remark. xn = xn+1 is not a condition for the sequence to halt. There may be 2 or more equal consecutive xn

values and yet not have the sequence halted.

Thus we now modify the main loop of the function instantiating the mean median map to use theorem 10 a) in the
following way:

Listing 2. Improved �rst revision of the mean median map instantiating function to use de�nitive terminating condition.

w h i l e ( mtOldMedian != mtMed_n )
{

// Sto r e the median as Old−Median b e f o r e comput ing the new one .
mtOldMedian = s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Mn, Clock > >:: I n i t i a l i z e ( mtMed_n ) ;

/* as b e f o r e */
}

Corollary 11. Any sequence with starting set containing one or two elements is trivial and halts immediately.

Proof. Let {x1} be the starting set for some sequence Xn, then M1 = x1, so X2 = (x1, x2 = 2x1 − x1 = x1), so
M2 = x1, so M1 = M2 and by theorem 10 a) the sequence is halted. Suppose {x1, x2} , x1 ≤ x2 is the starting set
for some sequence Xn, thenM2 = 1

2 (x1 + x2), so X3 =
(
x1, x2, x3 = 3

2 (x1 + x2)− (x1 + x2) = 1
2 (x1 + x2) = M2

)
.

Now, since x1 ≤ x2 it follows that x3 = M2 ≤ x2, so XSort
3 = (x1, x3, x2), so M2 = M3 so by theorem 10 a) the

sequence is halted.

Remark. Sequences produced from starting sets with three and more elements are highly nontrivial. Consider the
highly nontrivial relationship between the Start Value and the Halt Value, and between the Start Value and the
Number of Iterations required for the sequense to halt for sequences produced from three point starting set as
follow {0, x, 1} , x = 0.5 + 1

20000n, 0 ≤ n ≤ 10000, n ∈ N shown on the �gures below. Chamberland and Martelli
demonstrate certain dependences on a similar graph that they have produced. The red rectangle in �gure 1 zooms
in on the �rst bleep in the linear part of the graph visually.

Figure 1. Start Value vs. Halt Value for sequences with starting sets {0, x, 1} , x = 0.5 + 1
20000

n, 0 ≤ n ≤ 10000, n ∈ N.
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Figure 2. Start Value vs. Iteration Count Until Halt for sequences with starting sets {0, x, 1} , x = 0.5+ 1
20000

n, 0 ≤ n ≤ 10000, n ∈ N.

We now zoom in numerically 1000 times on the interval 0.514-0.515 with otherwise the same setting.

Figure 3. Zoom in on the interval 0.514 - 0.515 with starting sets {0, x, 1} , x = 0.514 + 1
10000000

n, 0 ≤ n ≤ 10000, n ∈ N.
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Observe in �gure 2, that the largest number of iterations required for all investigated sequences starting in the
interval of the �rst bleep (0.514-0.515) is approximately 100. In �gure 3 however the largest number of iterations
for a sequence starting in the same interval is over 300000, in fact 334562 iterations. The more we zoom in, the
more complicated graphs are the results. Similar results are produced when experimenting with other numbers,
including with sequences converging to an irrational numbers. Number of experiments were produced with sequences
converging to the golden ratio -1, i.e. with starting sets {0, x, 1} , x = Fn

Fn+1
, where Fn is the n-th Fibonacci number.

Clearly the information stored in the graphs is incomplete and not useful for interpretation and solving the problem.
We continue with further results.

Corollary 12. Let n ∈ N, Mn = Mn+1 ⇔ xn+2 = Mn+1.

Proof. ” ⇒ ” is part b) of theorem 10. ” ⇐ ” Suppose that for some n ∈ N, xn+2 = Mn+1. From theorem 6we
write Mn+1 = xn+2 = Mn+1 + (n + 1) (Mn+1 −Mn), so Mn+1 −Mn = 0, so Mn+1 = Mn.

Remark. This corollary may seem trivial, however it is required to safely optimize the software and remove an
auxiliary object holding Mn−1 (or Mn) depending on how the software is constructed. By theorem 10 the sequence
halting condition is Mn = Mn+1, which implies that the software needs to keep track of one Mn and terminate the
generation of new xn+1 when the current Mn is equal to the previous one. However the above corollary justi�es
terminating the generation of new xn+1 when the newly generated xn+1 is equal to the current Mn. This is
important for speed wise optimisation of the software. In particular, if one is using processor/coprocessor native
arithmetic registers data holders, then the memory spent for one additionalMn is negligible, as well as the processor
time for assignment and comparison. The later in a modern processor would be a few processor clocks, say 7 clocks
on average, propagated on average say 50,000 elements sequence is still not essential. However since the software
is using arbitrarily precise rational and algebraic irrational numbers, constructed over an arbitrarily large integer
numbers an assignment and comparison operations may take much larger amount of processor time, and hence this
optimisation is important, though it is not essential.

Lemma 13. Let k, n ∈ N,k ≤ n, then for all n ≥ 1, M2n+1 = xn = x̃k.

Proof. 2n + 1 is odd for all n ∈ N, so by de�nition 0.1 M2n+1 = xn, but x̃k=xn, for some k ≤ n.

Lemma 14. For all n ∈ N, xn+1 ≥Mn.

Proof. From de�nition 6 xn+1 = Mn + n(Mn −Mn−1), but Mn is monotone by theorem 4, so Mn ≥ Mn−1, so
n(Mn −Mn−1) ≥ 0, so xn+1 ≥Mn.

Corollary 15. For every two newly added to a non-halted sequence elements xn+1 and xn+2 the centre of the sorted
sequence travels to the right (towards the greater values elements in XSort

n ) with one position retaining its structure.

Proof. From lemma 14 xn+1 ≥ Mn and using the de�nition of the centre Cn := {x̃k : k ∈ Kn}, where Kn :={
1
2 [(n + 1)− (n + 1)mod 2] , 1

2 [(n + 1) + (n + 1)mod 2]
}
. Suppose n is odd, then:

- For Kn, (n is odd) we get:

Kn =
{

1
2 [n + 1] , 1

2 [n + 1]
}
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Kn =
{

n+1
2

}
.

- For Kn+1, (n + 1 is even) we get:

Kn+1 =
{

1
2 [((n + 1) + 1)− ((n + 1) + 1)mod 2] , 1

2 [((n + 1) + 1) + ((n + 1) + 1)mod 2]
}

Kn+1 =
{

1
2 [(n + 2)− (n + 2)mod 2] , 1

2 [(n + 2) + (n + 2)mod 2]
}

Kn+1 =
{

n+1
2 , n+3

2

}
, so the centre position stays the same, but its size increased by one.

- For Kn+2, (n + 2 is odd) we get:

Kn+2 =
{

1
2 [((n + 2) + 1)− ((n + 2) + 1)mod 2] , 1

2 [((n + 2) + 1) + ((n + 2) + 1)mod 2]
}

Kn+2 =
{

1
2 [n + 3] , 1

2 [n + 3]
}

Kn+2 =
{

n+3
2

}
, moving the position of the centre with one position to the right towards the larger value elements

in the ordered by size sequence, and restoring its original structure containing one element.

- For Kn+3, (n + 3 is even) we get:

Kn+3 =
{

1
2 [((n + 3) + 1)− ((n + 3) + 1)mod 2] , 1

2 [((n + 3) + 1) + ((n + 3) + 1)mod 2]
}

Kn+3 =
{

1
2 [(n + 4)− (n + 4)mod 2] , 1

2 [(n + 4) + (n + 4)mod 2]
}

Kn+3 =
{

n+3
2 , n+5

2

}
, so the centre position remained the same, but its size increased by one.

Continuing for higher n the pattern repeats itself. So for a non-halted sequence, every two newly added to the
sequence elements increase the centre position by one retaining its structure.

Remark. The statement of this corollary is the same as to as to say that for a non-halted sequence the speed of
movement of the centre towards the larger values elements is equal to half of the speed of adding of new elements
to the sequence, or that the speed of adding of new elements to the sequence is twice as fast as the speed of the
centre.

Lemma 16. For all n ∈ N, xn ≥Mn.

Proof. From lemma 14 xn+1 ≥ Mn, for all n ∈ N, so xn+1 will be positioned to the right (in the direction of
increasing values) in the ordered sequence in respect to the centre.

There are the following cases of positioning of xn+1 in the ordered sequence. xn+1 becomes part of the centre, xn+1

is positioned immediately to the right of the centre and �nally xn+1 is positioned to the right of the centre with
some elements of the sequence between the centre and xn+1.

1. xn+1 becomes part of the centre.
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- if |XSort
n+1 | = 2k+1, so |XSort

n | = 2k, so Centren = {a, b}, so XSort
n+1 = {..., a, xn+1, b, ...}, so Centren+1 = {xn+1},

so Mn+1 = xn+1 and in general for this case xn = Mn;

- if |XSort
n+1 | = 2k, .so |XSort

n | = 2k + 1, so Centren = {a}, XSort
n+1 = {..., a, xn+1, ...}, so Centren+1 = {a, xn+1}, so

Mn+1 = 1
2 (a + xn+1) so Mn+1 ≤ xn+1and in general for this case xn ≥Mn;

2. XSort
n+1 = {..., Centre, xn+1, ...}, and

- if |XSort
n+1 | = 2k + 1, so |XSort

n | = 2k, so Centren = {a, b} then Mn+1 = b, but b < xn+1, so Mn+1 < xn+1 and in
general Mn < xn;

- if |XSort
n+1 | = 2k, so |XSort

n | = 2k+1, so Centren = {a} then Mn+1 = 1
2 (a + xn+1), but a < xn+1, so Mn+1 < xn+1

and in general Mn < xn;

3. XSort
n+1 = {..., Centre, ..., xn+1, ...}, and for simplicity w.l.o.g. XSort

n+1 = {..., Centre, c, xn+1, ...}, then

- if c = xn+1 we are in the case 1 and we are done;

- if c 6= xn+1, then for some ai ∈ Centre, i = 1 or i = 1, 2 we have ai ≤ c < xn+1, then

Mn+1 =

{
a1,

1
2 (a1 + a2) ,

|XSort
n+1 | = 2k + 1, so Mn+1 = a1 < c < xn+1

|XSort
n+1 | = 2k, so Mn+1 = 1

2 (a1 + a2) < c < xn+1.

So Mn+1 < xn+1 and in general Mn < xn. Combining this with (1) and (2) above we have the desired result that
for all n ∈ N, xn ≥Mn.

Remark. The last two results are very important. They are used to accelerate the software on average about ten
times. Since xn+1 = (n+1)Mn−Sn is not monotone function, without them the software have to scan the whole of
the sorted sequence in order to �nd the correct location for every newly generated xn+1. Using these results however
the software can search only from the last median upwards, thus reducing the comparison operations to at least
half. Later it will be shown that in fact as a sequence grow in size the relative bene�t from these results also grows
since the newly generated xn+1 are becoming closer and closer to Mn. Further optimization of the software due to
these results is that because xn ≥Mn, xn will be placed always on the right (on the side of the increasing by value
members of the sequence), but this means that a pointer to the �rst element of the centre of XSort

n will remain valid
after adding the new element to the sequence. Therefore it is no longer necessary to calculate the indexes of the
elements of the centre XSort

n , and iterate through the list representing the sequence in order to retrieve the centre
elements and use them to calculate the new median. Instead, only keeping a pointer to the �rst element of the
centre of XSort

n and increasing it with one for every two new elements added to the sequence is su�cient to allow us
to compute the median in an optimal manner. Without this result the software computed 2157 sequences starting
at 514/1000 (0.514) and reaching 1713881/3333000 (0.5142157215721572) for approximately 80 hours. Modifying
the software to use the above results computed the same sample of data for approximately 8 hours, thus achieving
approximately 10 fold performance increase.
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Listing 3. Improved revision of the main loop of the mean median map instantiating function.

f o r ( MEDIAN_TYPE mtX_n_plus_1 = ( l i s tXn_ByValue . GetCount ( ) + 1) * mtMed_n − mtSum_n ;
mtX_n_plus_1 != mtMed_n ;
mtX_n_plus_1 = ( l i s tXn_ByValue . GetCount ( ) + 1) * mtMed_n − mtSum_n )

{
// Lemma 12 . X[ n+1] >= M[ n ] .
MASSERT( mtX_n_plus_1 >= mtMed_n ) ;

mtSum_n += mtX_n_plus_1 ;

// Add the new Xn i n the c l o c k s o r t e d sequence .
l istXn_ByTime . AddTai l ( new s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Xn , C lock > >(

s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Xn , C lock > >:: I n i t i a l i z e ( mtX_n_plus_1 ) ) ) ;

// I n s e r t dX_np1 i n the sequence and f i n d the new Median .
f o r ( MList< s p e c i a l i z e < Pai r< MEDIAN_TYPE, DWORD >, s p e c i a l i z e < Xn , Value > > >::MP<

s p e c i a l i z e < Pai r< MEDIAN_TYPE, DWORD >, s p e c i a l i z e < Xn , Value > > >* pMP( pMedian ) ; NULL != pMP; pMP= pMP−>GetNext ( )
)

{
i f ( mtX_n_plus_1 < pMP−>GetObject ( )−>GetLabe l ( ) )
{

// I n s e r t median he re . I t i s impo r t an t t ha t the i n e q u a l i t y i s s t r i c t ! <= would i n s e r t the
// e lement i n the c o r r e c t p l a c e i n r e s p e c t to the va l u e s , but t ha t w i l l make the p o i n t e r to
// the median to po i n t to the wrong p l a c e as the sequence w i l l be s h i f t e d w i th one e lement .
pMP = l i s tXn_ByValue . AddBehind ( pMP−>GetPrev i ou s ( ) ,

new s p e c i a l i z e < Pai r< MEDIAN_TYPE, DWORD >, s p e c i a l i z e < Xn , Value > >(
s p e c i a l i z e < Pai r< MEDIAN_TYPE, DWORD >, s p e c i a l i z e < Xn , Value > >:: I n i t i a l i z e (

Pa i r< MEDIAN_TYPE, DWORD >( mtX_n_plus_1 , l istXn_ByTime . GetCount ( ) ) ) )
) ;

b r e a k ;
}

}

i f ( l istXn_ByTime . GetCount ( ) != l i s tXn_ByValue . GetCount ( ) )
{

// The mtX_n_plus_1 has not ye t been added .
l i s tXn_ByValue . AddTai l ( new s p e c i a l i z e < Pai r< MEDIAN_TYPE, DWORD >, s p e c i a l i z e < Xn , Value > >(

s p e c i a l i z e < Pai r< MEDIAN_TYPE, DWORD >, s p e c i a l i z e < Xn , Value > >:: I n i t i a l i z e (
Pa i r< MEDIAN_TYPE, DWORD >( mtX_n_plus_1 , l istXn_ByTime . GetCount ( ) ) ) ) ) ;

}

i f ( 0 == ( l i s tXn_ByValue . GetCount ( ) & 1) )
{

mtMed_n = ( pMedian−>GetObject ( )−>GetLabe lRef ( ) + pMedian−>GetNext ( )−>GetObject ( )−>GetLabe lRef ( ) ) /2 ;
pMedian = pMedian−>GetNext ( ) ;

}
e l s e
{

mtMed_n = pMedian−>GetObject ( )−>GetLabe lRef ( ) ;
}

l i s tM e d i a n s . AddTai l ( new s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Mn, Clock > >(
s p e c i a l i z e < MEDIAN_TYPE, s p e c i a l i z e < Mn, Clock > >:: I n i t i a l i z e ( mtMed_n ) ) ) ;

}

Corollary 17. The sequences Xn and XSort
n are bounded below by inf (Mn), and in particular by M1.

Proof. The �rst part follows immediately from lemma 16. The second part follows from the �rst part and from the
fact that (Mn) is increasing.

We now display a helpful graph visualizing the above results for Xn, X
Sort
n , Mn, En and Mn −Mn−1 in respect

to the iteration count until the Xn halts. The starting set for this experiment is {0, 0.5(2180), 1}, however the
dynamics of this sequence is common for nontrivial sequences. The graph shows the sequences until Mn 6= Mn−1,
which is the terminating condition for the sequence generation as per theorem 10 a) and program listing 3.
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Figure 4. Plot of sequences until the halt, for starting set {0, 0.5(2180), 1}.

We acknowledge the increasing (monotone) XSort
n , Mn and En sequences and the non-monotone Xn and Mn −

Mn−1, as well as xn ≥Mn for all n ∈ N and other observable results.

De�nition. Any subsequence K :=
(
x̃i, x̃i+t : 1

2 [(n + 1) + (n + 1)mod 2] < i, 0 < t ∈ N, x̃i = x̃i+t

)
⊂ XSort

n is
called Halt Kernel.

Remark. A halt kernel is a subsequence of XSort
n such that it has more than one elements which are equal and

these elements are bigger than the elements constituting the centre, i.e. they are to the right of the centre (in the
direction of increasing values). Since Xn is not monotone suppose that for some i, j < n, i 6= j, xi = xj 6= Mn,
then for some k ≤ n we have xi = x̃k = x̃k+1 = xj and thus x̃k = x̃k+1 ∈ XSort

n form a halt kernel in it.

The following example illustrates the operation of the map. Suppose we begin with starting set {0, 0.7, 1}. The
�rst new element is calculated using de�nition 0.1 is x4 = 1.1. The next xn are calculated using theorem 6. In
reality the software uses only de�nition 0.1, however it is easier understanding the mean median map in terms of
theorem 6. For this reason on the �gure starting from x5 onwards new xn are computed using theorem 6. The
value produced for x5 is 1.45. By corollary 15 the centre of the sequence travels with half of the speed of adding
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Figure 5. Halt Kernel forming for sequence with starting set {0, 0.7, 1}.

new elements to Xn. The next two values added to the sequence are x6 = 1.75 and x7 = 1.35. The following
x8 = 1.45 however is equal to x5, so as x8 is added to the sequence a new Halt Kernel is created. This halt kernel

Figure 6. Data - �nal iteration - produced by the software for sequence with starting set {0, 0.7, 1}.
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is the �rst and only one for this sequence. Since the centre is on the left traveling to the right it approaches the
halt centre as more elements are added to the sequence. Once the centre reaches and absorbs the halt centre the
sequence halts as there are two equal medians one after another which by theorem 10 a) is the halt condition. The
software is able to produce data sheets similar to the one on �gure 6 for any iteration allowing the observer to see
the Halt Kernel formation and the Centre traveling towards it and absorbing it. For some sequences the map may
generate additional halt kernels with smaller or larger value before it reaches any previously generated halt kernel.
In the previous example suppose that the value x9 = 1.35 instead of 2.225, then we would have a new smaller
halt kernel generated just before to be absorbed by the centre and halt the sequence. For this map however the
next four values are x9 = 2.225, x10 = 2.475, x11 = 1.8(9), x12 = 2.0 pushing the centre towards the halt kernel
K = {1.45, 1.45}. Finally x13 = 1.45 = M12 showing that the sequence was already halted by corollary 12 and
theorem 10.

De�nition 18. Critical Distance ∆(xp−1, xp, xp+1) between three points xp−1 and xp determining Mn−1 and Mn

and xp+1 thus xn+1 = Mn + n (Mn −Mn−1) is the distance determining if xn+1 ≤ xp+1 or xn+1 > xp+1 .

Theorem 19. Let Xn be a recursive sequence generated by the mean median map, then ∃ m ∈ N s.t. ∀ n ∈ N,
xn ≤ xm, we de�ne xmaximal := xm.

Proof. Let Xn be a recursive sequence generated by the mean median map from starting set {x1, x2, . . . , xk} and
suppose n > k + 1, then recall xn+1 = Mn + n (Mn −Mn−1) is true by theorem 6. De�ne Basen := Mn giving us
an insight for the meaning of the expression xn+1 = Basen +n (Basen −Basen−1). Call the di�erence between two
consecutive bases ∆n = Basen −Basen−1, and we get xn+1 = Basen + n∆n. So the value of xn+1 depends on the

Basen and on the di�erence ∆n between two consecutive bases. Also recall Mn = 1
|Centren|

∑|Centren|
k=1 x̃k = Basen,

is increasing. This implies that the falls in the Xn are due to a small distance ∆n between the medians (i.e. between
the points determining them in the sorted sequence). In order to show that a maximal element exists will show
that the centre never reaches some element on the right-hand side in the ordered sequence. This would implies that
since the distances between the elements are limited the newly generated xn are bounded.

Suppose that Xn has n <∞ elements and m ≤ n, t = 1 . . . n, then ∃xm ∈ Xn s.t. xm ≥ xt. Then x̃n = xm will be
the rightest element in the sorted sequence. Since by corollary 15 the centre is traveling to the right with half of
the speed of adding of new elements to the sequence, for the centre to reach the x̃n, the sequence must add L new
elements to the right of x̃n where

L ≥ 2× n

2
+ 2× r = n + 2× r, (0.9)

where r is the number of elements added to the left of x̃n until the centre reaches x̃n. It is therefore possible for
the centre to never reach x̃n. Since x̃n is the rightest, the next Basen+1 (i.e. Mn+1) produced from XSort

n will not
use it, except if n = 1 or 2 in which cases the sequence halts immediately and we are done by corollary 11. So the
next median, i.e. base is produced from some smaller x̃p (, x̃p+1) in XSort

n . So the base contribution for the new
xn+1 will be smaller than the currently maximal element in the sequence. The second contribution factor is from
the di�erence ∆n = Basen −Basen−1 between the current and the previous bases.

1. Suppose ∆n is such that xn+1 < xn, then the new xn+1 will be placed to the left of the maximal xn in the sorted
sequence XSort

n+1 but to the right of the current median by lemma 16, so xn+1 will be positioned between some x̃q

and x̃q+1, where q > p (, p + 1) and q + 1 < n. This also implies that the r − count is increased by one and the
distance between some two points will be split into two smaller distances. In detail: if the following xn+t, t > 1 are
such that equation 0.9 is:

1.1. never satis�ed we are done since the maximal so far xn will remain maximal.
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1.2. enough xn+t are generated such that xn+1 becomes part of the centre at some l− th iteration in future. Since
xn+1 is placed between some x̃q and x̃q+1 then the distance between the latter will be cut in two pieces. Now:

1.2.1. if ∆(x̃q, xn+1, x̃q+1) is less than the critical distance then the generated xl will be positioned to the left of
x̃q+1 thus injecting a new element to the right of the Basel (Basel is determined by x̃q and xn+1), and since it
is injected to the left of xn it increases r in equation 0.9 by at least two (one for xn+1 and one for xl). Also, the
distance between of xn+1 and x̃q+1 is now again cut in two parts by xl, thus further decreasing ∆l because clearly
(n+1)∆

2 � n∆.

1.2.2. if ∆(x̃q, xn+1, x̃q+1) is larger than the critical distance then the generated xl will be positioned to the right
of x̃q+1, so:

1.2.2.1. xl may be the new largest value - in this case it will be ignored for at least L −many new elements by
equation 0.9, again also increasing the r − count by one.

1.2.2.2. xl will be positioned between x̃q+1and x̃q+2 thus increasing the r − count by least two (one for xn+1 and
one for xl) and additionally cutting the distance between x̃q+1and x̃q+2 in two parts, as in 1.2.1.

So if xn+1 < xn, then in every case r increases by at least one, so at least two more elements are need to add to
the sequence (in addition to the already required number) on the right hand side of xn (i.e. larger than xn values)
before the centre could reach xn, while at the same time the distance between two points have been split into two
distances and thus making the advances of two xl, xl+1smaller instead of having one larger. So xn+1 < xn stabilizes
xn as a maximum.

2. Suppose that xn+1 > xn, so now xn+1 is the new maximal value. But it is not possible to have continuously
new largest values added to the sequence because largest value is determined by large base and large ∆n, but the
largest xn are ignored (because of sorting) for at least L new elements, so some smaller values are used for base
and ∆n. The newly generated values, as shown in (1) above, are then injected somewhere in the sorted sequence
to the right of the (base) median value used in their computation and to the left of the maximal values, further
introducing smaller bases and dividing any larger distance.

3. Suppose that xn+1 = xn then:

3.1. if the centre never reach the xn+1 = xn as placed in the sorted sequence we are done;

3.2. if the centre reach xn+1 = xn as placed in the sorted sequence then the sequence halts by theorem 10 part a)
and we are done.

Since the median travels 1/2 of the speed of adding new values, and for every new xn+1 added to the sequence
smaller than the maximal:

a) two new values larger than the maximal will be needed to overtake it;

b) xn+1 divides the distance between the points between which it is injected in the sorted sequence and thus produce

two new smaller xn+i and xn+i+1 since (n+1)∆
2 � n∆ instead of just one larger xn+i. These two new smaller xn+i

and xn+i+1 promote further division by the same reason. Further for each smaller xn+i two larger than the maximal
values are required by a) to compensate for it, which become increasingly di�cult since the interval bcomes denser
and denser populated, with smaller and smaller distances between the elements.

So we have a continuously becoming denser area of elements, and for some large enough x̃n, and large enough n,
but �nite, n-times the distance n∆n between any two Mn and Mn−1 is insu�cient to extend the base Mn for the
next xn+1 beyond x̃n, and thus x̃n becomes, (i.e. remains) the maximal element xmaximal.
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Remark. Again, brie�y when and why Xn collapses: looking into �gure 4 above clearly Xn is non-monotone. The
behaviour of Xn is determined by the equation xn+1 = Basen + n (Basen −Basen−1), where Basen ≡Mn. Thus
Basen is determined by Cn and Basen−1 by Cn−1, so xn+1 by three consecutive points in the middle of the sorted
sequence. When it so happens that the distance between the upper two points is smaller than the distance between
the lower two points Xn drops, that is xn+1<xn . The exact drop depends mostly on the values of the three points
and to a lesser degree to how large n is.

Corollary 20. The sequense of medians (Mn) is bounded above by xmaximal.

Proof. Follows immediately from lemma 16 and theorem 19.

Corollary 21. The sequence Xn → (Mn) as n→∞.

Proof. Let Xn be a recursive sequence generated by the mean median map from starting set {x1, x2, . . . , xk} and
suppose n > k + 1, then recall xn+1 = Mn + n (Mn −Mn−1) is true by theorem 6. Since (Mn) is increasing by
theorem 4 and (Mn) is bounded above by xmaximal then (Mn −Mn−1)→ 0, so xn+1 →Mn as n→∞.

Theorem 22. There exists least upper bound x∗maximal for (Mn) such that x∗maximal ≤ xmaximal.

Proof. Suppose Xn contains enough elements so that n-times the distance n∆n between any two Mn and Mn−1

is insu�cient to extend the base Mn for the next xn+1 beyond x̃n, so x̃n = xmaximal = x∗maximal. But since
the maximal is achieved all new elements added to the sequence are added to the left of x̃n thus increasing the
density of elements between the centre and x̃n. When su�cient density is achieved the x̃n−1 element in the sorted
sequence becomes unreachable for the same reasons as x̃n before it, so x̃n−1 becomes the new least upper bound,
so x∗maximal = x̃n−1 ≤ x̃n = xmaximal. The process of lowering the least upper bound continues:

1. If the sequence halts until the sequence halts in which case x∗maximal = xhalted.

2. If the sequence does not halt x∗maximal →Mn as n→∞.

Remark. E�ectively, these are sequences attracting/pushing onto each other, on one hand Mn is increasing (though
bounded above) pushing upwards, and on the other hand Xn which is overall decreasing pushing down towards
Mn.

Theorem 23. Xn and Mn are Cauchy sequences.

Proof. If the sequence halts after �nitely many iterations then the theorem is immediately true for both Xn and
Mn. If the sequence does not halt then Mn is a Cauchy sequence immediately from theorem 4 and corollary 20.
Then by corollary 21 Xn is also a Cauchy sequence.

Proposition 24. The weak terminating conjecture is true.

Proof. Follows immediately from corollary 20.
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Figure 7. Plot of sequences until they halt. All over 20,000 experiments yield similar results.
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Remark. Although it may seem that the sequences have the same maximal value they in fact do not have the same
maximal value. Refer to �gure 3 where is a plot of the sequence vs. the max value for 10000 sequences on the
interval 0.514 - 0.515.

Remark. Some halt kernels formed by the mean median map could be void, that is halt kernels with a value larger
than the least upper bound of the (Mn) sequence will be never reached and absorbed by the centre and thus could
never halt the sequence, and so are void.

Lemma 25. Let n > 2 and n-even, then Mn+1 − En+1 = Mn − En, and for all n > 0 and n-even, then
Mn+1 −Mn = Mn −Mn−1.

Proof. By theorem 7, Mn+1−En+1 = Mn−En is the same as Mn+1−Mn = Mn−Mn−1. Now, n is even so n±1
is odd, so:

Mn+1 −Mn = xn+2
2
− 1

2

(
xn

2
+ xn

2 +1

)
= 1

2

[
xn

2 +1 − xn
2

]
Mn −Mn−1 = 1

2

(
xn

2
+ xn

2 +1

)
− x (n−1)+1

2
= 1

2

[
xn

2 +1 − xn
2

]
Conclusion. The author believes that Strong Terminating Conjecture is true. The reasons for this belief are:

Clearly all points in the Xn and Mn sequences are linearly dependent. For example, consider the sequence with
starting set {0, 0.7, 1}. As we saw previously it halts in 12 iterations, in fact in 9 actual as the �rst three are building
the starting set. Expressing the two xn values from the halt kernel by unwinding the recursive iterations that
produced them we have:

x5 = M4 + 4 (M4 −M3) = 1
2 (x̃3 + x̃2) + 4

(
1
2 (x̃3 + x̃2)− x̃2

)
= 5

2 x̃3 − 3
2 x̃2 = 1.45

x8 = M7+7 (M7 −M6) = x̃4+7
(
x̃4 − 1

2 (x̃4 + x̃3)
)

= 1
2 (9x̃4 − 7x̃3) = 1

2 (9 [4M3 − S3]− 7x̃3) = 1
2 (9 [4x̃2 − x̃3 − x̃2 − x̃1]− 7x̃3) =

−8x̃3 + 27
2 x̃2 = 1.45

In addition to this observation we also observe that for every even n = 2k, k ∈ N, the median de�nition divides
the sum between two elements of Xn: Mn=2k = 1

2 (xn
2

+ xn
2 +1). On the other hand for every even n xn+1 =

Mn + n (Mn −Mn−1) = Mn + 2k (Mn −Mn−1) (theorem 6) cancels that division. Also we note that this equation
is symmetric to the median de�nition for even n : Mn=2k = 1

2 (xn
2

+ xn
2 +1) = xn

2
+ 1

2 (xn
2
− xn

2 +1). Since all points
in Xn and Mn are linearly dependent, and since Xn and (Mn) are Cauchy sequences the Xn and (Mn) points get
arbitrarily dence as n→∞, as well as Q = (qn), with Qn = (x1, M1, x2, M2, x3, M3, . . . , xn, Mn) by corollary 21
and theorem 23. So we have arbitrarily dense sequences of linearly dependent points, where Xn (and Qn) are NOT
monotone. So it is plausible to expect that somewhere in the �nite future an already generated value will emerge
again and thus create a halt kernel, repeating the process until a non-void halting kernel halt the sequence.

A few �nal thoughts that might be helpful:

1) We have an arbitrarily dense sequences of linearly dependent points, where Xn is NOT monotone. Also we have
the sequence halting for at least one starting set, say {0, 0.7, 1}, so if the median map represents a complete class
then it halts for all starting sets.

2) Periodic functions. Fourier analysis and convolution.

3) Chinese reminder theorem.

This project being a MSci thesis is time and resource constrained. Since the author has number of other modules
and obligations requiring his attention, regretfully he was unable to make a serious attempt to formalize the above
conclusion and transform it into a proof.
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Part IV

Software

4.1 Object Specialization Model

We consider software modelling in object oriented environment, using C++ in particular.

It is not unusual for people to wonder why in the law of God lies are forbidden. One possible answer is that in
an absolute world lies cannot exist or if they exist in a world then that world is not absolute. This is so because
for a lie to exist it requires another lie to maintain it and thus if a lie is introduced then eventually the world
becomes entirely self-contradictory. Hence in the world of God, which by de�nition is complete and omniscient a
lie is impossible. Take this a�rmation and translate is to the relation between a world that has been modelled by
software and the world of the software itself. The software must represent the universe of discourse precisely or if
this fails to be the case, then early or late there will appear one or more fundamental contradiction in it, which will
make the software eventually impossible to exist (live) - grow. This implies necessity for the software model to be
in one to one correspondence with the world that it describes, i.e. is to have no �lies� in it.

One of the implications of the above proposition is that names of variables must be precise. Comprehensive
namespace however is only possible within comprehensive model. On the other hand comprehensive model is not
possible without comprehensive namespace.

Suppose all variables in some software are named precisely with the names of entities that they precisely represent.
What makes it impossible to use two or more variables of the same type interchangeably but inappropriately?
Suppose that there are two Boolean variables representing the values of two unrelated propositions say: �Today is
Monday� and �Water �ows�. Clearly they have nothing in common and must not be confused or mixed, however
since the two variables representing the propositions are of the same type it is possible to erroneously assign the
value of one of them to the other or use them in the same Boolean expression inappropriately, such as using the
incorrect variable in a function call or other. So although the variable names represent some entity precisely errors
are possible. These errors if misunderstood and corrected erroneously will lead to failure to maintain bijective
representation of the universe of discourse.

Thus we identi�ed the existence of another dimension to each and every variable which is its context. The author
hereby proposes the idea to add a new dimension to objects, which would accommodate the information for context
of the variable. This information then can be used by the compiler to ensure that the variable is being used only
in the correct context, and if used improperly raise an appropriate error. Variables from di�erent contexts could
be used cross-context only via appropriate explicit context conversion.

The property maintaining the context information must be part of the meta-space, as opposed to part of the object.
Thus the context of the object does not in any way alter the physical footstep of the object or its performance.
All context information, checks, conversion and other properties and information are maintained explicitly in the
meta-space and have no impact whatsoever on the compiled software and its performance.

In fact context already exist when considering types. The context of a type is de�ned by the namespace (if any)
where the type is de�ned or the container (if nested), its ancestors and the overload constructors, methods and
conversion operators. Presently context of variables also exist but only at physical level, which can be declaration
scope (stack frame), containing class (object) or both. This is why two variables of the same type existing in
compatible stack frames can be freely misused. The proposal in this paper is to add logical scope to variables, i.e.
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context of objects, and thus prevent misuse in the same way as object from incompatible types cannot be misused
without explicit conversion.

Adding context to a variable must e�ectively modify the methods/conversion operators of the class of the variable
in a way so that there is a consistent behaviour. Ideally there would be native compiler support, where appropriate
syntax might be for example:

boo l<~ ContextA ~> bObjectName1 ;
boo l<~ ContextB ~> bObjectName2 ;

It is possible to achieve variable specialization, i.e. attach context to variables with the facilities that C++ already
have, although dedicated native support would be preferable. By using template specialization and inheritance we
are able to achieve the required results. Consider the template class de�nition:

Listing 4. Template class achieving variable specialization using already available C++ facilities.

t emp l a t e< c l a s s c l a s s C o n s t i t u t i o n , c l a s s c l a s sC on t e x t > c l a s s s p e c i a l i z e : p u b l i c c l a s s C o n s t i t u t i o n
{
p u b l i c :

c l a s s I n i t
{
p u b l i c :

c o n s t c l a s s C o n s t i t u t i o n& ob j ;

p u b l i c :
e x p l i c i t I n i t ( c o n s t typename c l a s s C o n s t i t u t i o n& ob j ) : ob j ( ob j ) {}

p r i v a t e :
I n i t& o p e r a t o r=( c o n s t I n i t& o b j I n i t )
{

ob j = o b j I n i t ;

r e t u r n ( * t h i s ) ;
}

} ;

s t a t i c I n i t I n i t i a l i z e ( c o n s t typename c l a s s C o n s t i t u t i o n& ob j )
{

r e t u r n ( I n i t ( ob j ) ) ;
}

s p e c i a l i z e ( )
{
}

s p e c i a l i z e ( c o n s t I n i t& ob j ) : c l a s s C o n s t i t u t i o n ( ob j . ob j )
{
}

s p e c i a l i z e ( typename c o n s t s p e c i a l i z e < c l a s s C o n s t i t u t i o n , c l a s sC on t e x t >& ob j ) : c l a s s C o n s t i t u t i o n ( *( c l a s s C o n s t i t u t i o n *)&ob j
)

{
}

typename s p e c i a l i z e < c l a s s C o n s t i t u t i o n , c l a s sC on t e x t > o p e r a t o r=( typename c o n s t s p e c i a l i z e < c l a s s C o n s t i t u t i o n , c l a s sC o n t e x t >&
ob j )

{
__super : : o p e r a t o r=( ob j ) ;

r e t u r n ( * t h i s ) ;
}

// p r o h i b i t e d to p r e v en t unwanted a s s i gnment s .
// typename s p e c i a l i z e < c l a s s C o n s t i t u t i o n , c l a s sC on t e x t > ope r a t o r=( typename c l a s s C o n s t i t u t i o n& ob j ) { . . . }

} } ;

#d e f i n e as ,
#d e f i n e by ,
#d e f i n e o f ,

An object from this type specialized with a type that we want to be intrinsic for the object and a second type giving
the context is in fact a variable of the intrinsic type specialized with the context type, which is our objective. An
object de�ned and specialized with the help of this template is less attractive than native implementation would
be but still gives the required results:

s p e c i a l i z e < boo l , ContextA > bObjectName1 ;
s p e c i a l i z e < boo l , ContextB > bObjectName2 ;
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Figure 8. Class diagram of the specialize< parameters > template.

In the template de�nition above we only allow one directional assignment, which may seem overly strict but as
we shall see it is necessary. The problem may seem to be that assignment such as: bObjectName1 = true/false;
generates error since the compiler does not know how to assign the reference-able (R) value to the locatable (L)
value. Adding the banned operator= resolves this issue (in fact not an issue); however this clears the path for
assignments such as: bObjectName1 = bObjectName2;.

This would defeat the purpose of the additional abstraction that we aim to introduce. Through the implied con-
version to the ancestor type allowed by the public visibility of the superclass, and then through the overloaded
assignment operator of the specialiser class the compiler quietly assigns incompatible-by-specialization (but com-
patible by type) variables, through the common superclass. Thus to break the chain we either have to disable
the implied conversion or to remove the compatible function overload, or both. When working with existing code
there would be many instances of objects from the superclass already existing in the code as well as functions
with parameters of the superclass. Prohibiting the implicit conversion from specialized to non-specialized objects
(i.e. to the superclass) would lead to cumbersome programming due the necessity for explicit conversion for every
assignment or use of specialized type where non-specialized is expected. On the other hand it is most important to
ensure that invalid assignment is impossible. Thus the solution is to maintain public inheritance of the superclass
and prohibit all compatible operators and methods. We therefore remove the compatible operator overload and
constructor which ensures an error in the assignment: bObjectName1 = bObjectName2;.

The removal of the compatible assignment operator however is the reason for impossibility of an assignment of
object of the superclass:
bObjectName1 = t r u e ; // g en e r a t e s e r r o r
bObjectName2 = f a l s e ; // g en e r a t e s e r r o r

We cannot introduce a constructor with appropriate type to initialize the specializer as this will lead to the same
problem as with the dedicated operator=, namely bypassing the context-wall which we aim to create. This we
introduce the auxiliary type Init and helper function Initialize( ... ) to help the initialization:
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bObjectName1 = s p e c i a l i z e < Bool , ContextA >:: I n i t ( t r u e ) ;
bObjectName2 = s p e c i a l i z e < Bool , ContextB >:: I n i t ( f a l s e ) ;

// or

bObjectName1 = s p e c i a l i z e < Bool , ContextA >:: I n i t i a l i z e ( t r u e ) ;
bObjectName2 = s p e c i a l i z e < Bool , ContextB >:: I n i t i a l i z e ( f a l s e ) ;

Remark. We do not make distinction between built-in type and user-de�ned type. For the purposes of this proposal
we shall supply a wrapper class to any used build-in type in order to maintain consistency.

De�nition 26. Context Specialized Type or just Context Type is a type composed by two or more types (possibly
context specialized) and is constructed in the metaspace explicitly when declaring an object thus de�ning its
type. The �rst of these types called constitution-class (or superclass, or type-class), determines the character and
behaviour of the object, thus the object �is of� that type. The remaining one or more types called context-class(es)
determine the relationships which the object could have, i.e. its context.

Example. Using classes bool and Colour we de�ne specialized types:

boo l<~ Co lo r ~> boo lMyPu l l o ve rB lue ;
Co lor<~ b o o l ~> a r g bCo l o r S u i t a b l e ;

Using the above template implementation:
s p e c i a l i z e < Bool , ContextA > bObjectName1 ( s p e c i a l i z e < Bool , ContextA >:: I n i t i a l i z e ( t r u e ) ) ;
s p e c i a l i z e < Bool , s p e c i a l i z e < ContextA , ContextB > > bObjectName1 ( s p e c i a l i z e < Bool , s p e c i a l i z e < ContextA , ContextB > >::

I n i t i a l i z e ( t r u e ) ) ;

Remark. The de�nition of Context Specialized Type does not in any way restrict the complexity of the constitution
and context classes.

Consider the task to place the type of a �le in a string. Some software architects may take the approach to specialize
a type i.e. derive a type e.g.:
c l a s s F i l eTyp eDe s c r i p t i o n : p u b l i c s t r i n g
{

// do a lmost no th i ng here , most work i s i n the base c l a s s
} ;

In practice almost all architects will simply use the string class just as it is. To use the context specialization
methodology however we can create an auxiliary type with an absolutely empty content e.g.:
namespace sX
{

c l a s s F i l eTyp eDe s c r i p t i o n { /* no th i ng */ } ;
} ;

Then simply context specialize the string object with it, achieving the desired result:
s p e c i a l i z e <s t r i n g , sX : : F i l eTypeDe s c r i p t i o n > st rType ( s p e c i a l i z e <s t r i n g , sX : : F i l eTypeDe s c r i p t i o n >: : I n i t i a l i z e (TEXT( " F i l e  type " ) ) ) ;

To improve readability we de�ne pre-processor syntax de�nitions for appropriate prepositions such as "as� and �by�
with coma, thus from now on we shall use the appropriate preposition instead of coma in order to improve readability.
It is a good practice to declare empty context-classes declared for the sole purpose to help constituting of Context
Specialized Types in a dedicated namespace, thus separating them from the rest of the model. By convention this
name space is called sX. Clearly using auxiliary empty context-classes is wrong when there are proper non-sX classes
available in the model, which could be used as context-classes, or when an appropriate context could be assembled
from them. For example suppose that the non sX-classes FileType and Description exist. Then we could do the
same declaration as above as follows:
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s p e c i a l i z e < s t r i n g as s p e c i a l i z e < Fi l eType by De s c r i p t i o n > > st rType ;

If there are classes File, Type and Description existing in the model, then we could construct the context:
s p e c i a l i z e < s t r i n g as s p e c i a l i z e < De s c r i p t i o n o f s p e c i a l i z e < Type o f F i l e > > > st rType ;

In a comprehensive model most classes would exist as non sX, and very few sX classes will be required. When using
multi-layer specialization as in the above two examples there may rise some disputes as to which class should be
constitution-class and which context-class, e.g. should we have specialize< FileType, Description > or specialize<
Description, FileType >. Consider the following prototype:
Pai r< s p e c i a l i z e < I n t e g e r as Quot i ent >, s p e c i a l i z e < I n t e g e r as Reminder > > I n t e g e r : : o p e r a t o r /( I n t e g e r iD i v i d end , I n t e g e r

i D i v i s o r ) ;

Now one need to de�ne classes: class Quotient { . . . } and class Reminder { . . . } for this declaration to be
meaningful. On the other hand Quotient and Reminder are integers, so there is a legitimate question whether
de�ning class Quotient : public Integer { }; and class Reminder : public Integer {};, or even better template< class
T> class Quotient : public T {}; and template< class T> class Reminder : public T {}; is not better than using
the Object Specialization Model? De�ning Quotient and reminder as templates may seem similar to the original
declaration, but they are clearly very di�erent: specialize< Integer as Quotient > specializes an Integer variable
as quotient, that is limits its external friends and �eld of connections. The other however specializes the internal
nature of the type Quotient. The alternative to the original declaration is then: inline Pair< Quotient< Integer >,
Reminder< Integer > > operator /( Integer iDividend, Integer iDivisor );. At �rst glance this declaration will have
immediate consequences similar to the original one, provided that casting operators and implicit constructors are
unavailable, but in fact this is a wrong way to go. The reason is that the type Quotient is not restricted to only
the whole part of division, but in a larger generalization (besides general homonyms). Quotient can also be a set,
group, space, etc, and template specialization cannot truncate this larger generalized type to the small reminder
from division case. Further Quotient< double > is a self-contradictory statement however there is no intrinsic way
to prohibit such declaration, while Reminder< double > is perfectly all right. Quotient and Reminder are abstract
entities and when de�ned as types required careful attention. Thus the specializer approach above is the correct one
in this case. The analysis of this model could be further extended but will be omitted here. The most important
consideration as always is to maintain bijective relation between the software model and the Universe of Discourse.

Suppose there is an enumerator de�ned as:
enum Resu l t
{

Succe s s = 0 ,
F a i l e d = 1 ,
Except i on = 3
// . . .

} ;

This scenario is not di�erent than an integer int< Width > when there is a native support for the Object Special-
ization Model.
Resu l t <~ sX : : Item ~> r e s u l t I t em1 ;
Resu l t <~ sX : : Item ~> r e s u l t I t em2 ;

However if we are using the substitute methodology we will have to de�ne a class for each enumerator, which would
include the native enum and operate on its behalf. Use of template specialized with the enumerator or a declaration
map propagating the native enumerator might be useful to simplify the task in a generic way.

The Object Specialization Model brings several advantages to software that implements it:

1. Safer code � the object specialization model prevents use of incorrect variables when they are from the same
type but di�erent contexts. Consider the following example form a commercial application:

31



b o o l Save ( c o n s t b o o l bKeepOnTopC ,
c o n s t b o o l bKeepOnTopO ,
c o n s t b o o l bUseFul lPath ,
c o n s t b o o l bPrev i ewF i l e ,
c o n s t b o o l bShu f f l eP l a y ,
c o n s t b o o l bPlayNextDi r ,
c o n s t b o o l bLoopDi rD i r s ) c o n s t t h r ow ( ) ;

Such functions with large list of parameters are not unusual in professional software development. Regardless
whether this large list of parameters is due to bad design or is indeed intrinsic for the function, the possibility for
an error using the incorrect Boolean value is there. To prevent from errors the software engineers are required to
invest extra e�ort. Using the object specialization model we transform the above function to a safe one as follows:

b o o l Save ( c o n s t s p e c i a l i z e < Bool , sX : : OnTopCompDlg > bKeepOnTopC ,
c o n s t s p e c i a l i z e < Bool , sX : : OnTopOpenDlg > bKeepOnTopO ,
c o n s t s p e c i a l i z e < Bool , sX : : UseFu l lPath > bUseFul lPath ,
c o n s t s p e c i a l i z e < Bool , sX : : P r e v i ewF i l e > bPrev i ewF i l e ,
c o n s t s p e c i a l i z e < Bool , sX : : S h u f f l e P l a y > bShu f f l eP l a y ,
c o n s t s p e c i a l i z e < Bool , sX : : P layNextD i r > bPlayNextDi r ,
c o n s t s p e c i a l i z e < Bool , sX : : LoopDi rD i r s > bLoopDi rD i r s ) c o n s t t h r ow ( ) ;

In the next example we will protect the FILETIME members of a structure from the same type of error.

s t r u c t F i l eDa ta
{

u n s i g n e d __int64 u i F i l e S i z e ;
DWORD dwAt t r i bu t e s ;

s p e c i a l i z e < FILETIME as sX : : Creat ionTime > f tC rea t i onT ime ;
s p e c i a l i z e < FILETIME as sX : : LastAccessTime > ftLas tAcces sT ime ;
s p e c i a l i z e < FILETIME as sX : : LastWriteTime > ftLas tWr i teT ime ;

s t r i n g s t r F i l e p a t h ;
} ;

2. Descriptive self-explanatory code � the de�nition of a context specialized object it is not only the name of the
object but also the Context Type which carries additional information for the meaning and purpose of the variable.
Thus the code becomes much more readable and meaningful. In addition the type information, i.e. the constitution
and context classes' information is also displayed by the Intelli-sense of the IDE and also in the watch windows of
the debugger making writing and debugging of code more e�cient.

3. Expanding and structuring the namespace/type-space - this is an architectural bene�t for the particular software
model being developed. Because of the context specialization, software architects now have more points and
relationships to base their models on and thus should have less number of failures in their attempts to achieve
bijective model. Generally, models always fail to be bijective and that is why fresh new versions of software are
developed. Consider the multibillion investments in Windows XP and the complete rewrite done for Windows 7.

4. Language function space expansion. Suppose the class:

c l a s s MyClass : p u b l i c MyClassParent
{

// . . .
v i r t u a l b o o l o p e r a t o r == ( c o n s t s t r i n g& strFi leNameToCompare ) c o n s t ;

} ;

is well de�ned and working on a whole hierarchy of types, with multiple instantiations and calls to the above
comparison operator. The passed as parameter string is interpreted as a �lename and is used to compare the
content of the �le with the content of the particular object invoking the method. Suppose that later one needs to
have another operator with the same prototype:

v i r t u a l b o o l o p e r a t o r == ( c o n s t s t r i n g& st rSt r ingToCompare ) c o n s t ;
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but this time they want to compare the actual string with the content of the object. However since the prototype
is already used the new function cannot be implemented with the same prototype. Traditionally the solution
would be to add another parameter, thus changing the prototype, and clarifying to the compiler which function we
would like it to call. It is clear that such an approach is crude, but in this particular case it is not even possible
since operator== can have only one parameter. There are also other possible crude solutions, requiring �ags,
initializations, de�nition of special unwanted types, etc. The Object Specialization Model however presents quick
and elegant solution. The solution of this problem using the suggested methodology is to specialize the parameter
of the function as follows:
c l a s s MyClass : p u b l i c MyClassParent
{

// . . .

// o r i g i n a l d e c l a r a t i o n − cou l d be a l s o kept i f wanted .
// v i r t u a l boo l o p e r a t o r == ( cons t s t r i n g& strFi leNameToCompare ) con s t ;

// mod i f i e d o r i g i n a l d e c l a r a t i o n .
v i r t u a l b o o l o p e r a t o r == ( c o n s t s p e c i a l i z e < s t r i n g as sX : : Fi leName >& strFi leNameToCompare ) c o n s t ;

// The newly added f u n c t i o n .
v i r t u a l b o o l o p e r a t o r == ( c o n s t s p e c i a l i z e < s t r i n g as s t r i n g >& st rSt r ingToCompare ) c o n s t ;

} ;

Now, should one desire they could specialize the parameter as they wish, including multi-level (nested) specialization
if the universe is discourse that they work with requires it.

5. Context overloading � Inspired by the above methodology the Object Specialization Model allows a new third
way of method overloading. The two other methods are:

a) Overwriting � when using polymorphic functions with the same prototype;

b) Overloading � when using functions with the same type but di�erent parameter list.

And now the third way:

c) Context overloading � works on both polymorphic and non-polymorphic functions with the same name and the
same parameter list where only the context-class of one or more parameters is di�erent than that of any other
overload. Example: the following three context-overloads are well de�ned overloads which will be distinguished by
the compiler and called as appropriate according to the type of the second parameter of the call.

v o i d MyClass : : MyFunction ( i n t , s p e c i a l i z e < s t r i n g , sX : : Fi leName >& ) ;
v o i d MyClass : : MyFunction ( i n t , s p e c i a l i z e < s t r i n g , sX : : FolderName >& ) ;
v o i d MyClass : : MyFunction ( i n t , s p e c i a l i z e < s t r i n g , s t r i n g >& ) ;

We �nish the Object Specialization Model with a note that in some cases specialization may be needed on a verb
as opposed to a noun. That is the constitution-class represents a verb or other type of entity instead of a noun as
usual. The same is also true for the context-class. Given the ability to construct multi-layer (nested) Specialization
Types this implies that an object could have Specialization Type which (literally) (re)presents a complete or partial
sentence and if necessary even a paragraph, chapter or novel.

The Object Specialization Model is available from http://www.MBBSoftware.com/Software/ObjectSpecializationModel/

Default.aspx under the MIT Open Source Software License Agreement. Future updates and development on the
Object Specialization Model will be published at that address. The source code that follows is used in the Mean
Median Map and in the examples of the above description.
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Listing 5. Implementation of the Object Specialization Model using templates and inheritance. 
 
// 
// 
// Specialize.h: Type Specialization definitions as example of implementation of: 
// 
//                   Object Specialization Model - Implementation Example One 
// 
// © Copyright 2009 - 2011 by Miroslav Bonchev Bonchev. All rights reserved. 
// 
// 
//****************************************************************************************************** 
 
 
// Open Source License – The MIT License 
// 
// 
// {your product} uses the: Object Specialization Model – Copyright © 2009 - 2011 by Miroslav Bonchev Bonchev. All Rights Reserved. 
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 
// associated  documentation files  (the "Software"),  to deal  in the Software without restriction, 
// including  without  limitation the rights  to use,  copy,  modify,  merge,  publish,  distribute, 
// sublicense,  and/or sell copies of the Software,  and to permit persons to  whom the  Software is 
// furnished to do so, subject to the following conditions: 
// 
// The  above  copyright  notice  and  this  permission  notice  shall be  included in all copies or 
// substantial portions of the Software. 
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 
// NOT  LIMITED  TO  THE  WARRANTIES  OF  MERCHANTABILITY,  FITNESS  FOR  A  PARTICULAR  PURPOSE AND  
// NONINFRINGEMENT.  IN NO EVENT SHALL  THE  AUTHORS  OR  COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 
// DAMAGES OR OTHER LIABILITY,  WHETHER IN AN ACTION OF CONTRACT,  TORT OR OTHERWISE,  ARISING FROM, 
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
 
 
//__________________________________________________________________________________________________ 
// This software is OSI Certified Open Source Software. 
// OSI Certified is a certification mark of the Open Source Initiative. 
 
 
#pragma once 
 
 
#include "Common.h" 
 
 
#define as , 
#define by , 
#define of , 
 
 
template< class classConstitution, class classContext > class specialize : public classConstitution 
{ 
public: 
   class Init 
   { 
   public: 
      const classConstitution& obj; 
 
   public: 
      explicit Init( const typename classConstitution& obj ) : obj( obj ) {} 
 
   private: 
      Init& operator=( const Init& objInit ) { obj = objInit; return( *this ); } 
   }; 
 
   static Init Initialize( const typename classConstitution& obj ) 
   { 
      return( Init( obj ) ); 
   } 
 
   specialize() {} 
   specialize( const Init& obj ) : classConstitution( obj.obj ) {} 
   specialize( typename const specialize< classConstitution, classContext >& obj ) : classConstitution( *(classConstitution*)&obj ) {} 
 
   typename specialize< classConstitution, classContext > operator=( typename const specialize< classConstitution, classContext >& obj ) 
   { 
      __super::operator=( obj ); 
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      return( *this ); 
   } 
 
   // Need to add the full spectrum of operators in future. 
   typename specialize< classConstitution, classContext > operator!() const 
   { 
      return( specialize< classConstitution, classContext >( specialize< classConstitution, classContext >::Init( __super::operator!() ) ) ); 
   } 
 
   typename classConstitution& GetConstitutionObject() 
   { 
      return( *this ); 
   } 
 
   typename const classConstitution& GetConstitutionObject() const 
   { 
      return( *this ); 
   } 
}; 
 
 
class Bool 
{ 
private: 
   bool b; 
    
public: 
   Bool() : b( false ) {} 
   Bool( const bool b ) : b( b ) {} 
   Bool( const Bool& b ) : b( b ) {} 
   Bool( const int ib ) : b( 0 != ib ) {} 
   ~Bool() {} 
 
   Bool& operator=( const bool b ) { this->b = b; return( *this ); } 
   Bool& operator=( const Bool b ) { this->b = b.b; return( *this ); } 
   Bool& operator=( const int ib ) { this->b = 0 != ib; return( *this ); } 
 
   bool operator==( const bool b ) const { return( this->b == b ); } 
   bool operator!=( const bool b ) const { return( this->b != b ); } 
 
   Bool operator==( const Bool b ) const { return( this->b == b.b ); } 
   Bool operator!=( const Bool b ) const { return( this->b != b.b ); } 
 
   Bool operator!() const { Bool b1( !b ); return( b1 ); } 
 
   operator bool () const { return( b ); } 
   operator bool& () { return( b ); } 
}; 
 
 
namespace sX 
{ 
   class FileTypeDescription {}; 
   class FileName {}; 
   class FolderName {}; 
 
   class Description {}; 
   class Type {}; 
   class File {}; 
   class Item {}; 
 
   class CreationTime {}; 
   class LastAccessTime {}; 
   class LastWriteTime {}; 
 
   class OnTopCompDlg {}; 
   class OnTopOpenDlg {}; 
   class UseFullPath  {}; 
   class PreviewFile  {}; 
   class ShufflePlay  {}; 
   class PlayNextDir  {}; 
   class LoopDirDirs  {}; 
 
   class Numerator {}; 
   class Denominator {}; 
   class Quotient {}; 
   class Reminder {}; 
}; 



4.2 Proper Numbers Library

The Proper Numbers Library is a small, e�cient and fast set of C++ classes that allows representation of arbitrarily
large integer numbers and arbitrarily precise rational numbers. It is easy to be integrated in any C++ project
and used as if the classes de�ned in it are native for the language. The name �Proper� comes from the proper
behaviour of the numbers that constitute it, and in particular the even distribution of rational numbers, and
other "proper� features. In order to enforce stricter Object Oriented compliance some standard operators such as
implicit conversion to Boolean values are not de�ned. For the needs of the Mean Median Map the classes need
no complex mathematical functions such as sine, cosine, roots, logarithm, etc. thus there are not such functions
presently de�ned. However, for the most common and usual uses the classes o�er the required functionality and
basic arithmetic operators. The library is published under the MIT Open Source Software License Agreement,
and can be downloaded from http://www.MBBSoftware.com/Software/ProperNumbersLibrary/Default.aspx.
Future updates and development on the Proper Numbers Library, such as adding more mathematical functions and
additional types of numbers will be published at that address.

4.2.1. The Integer Class

The Integer class represents unsigned integers with arbitrary precision. Objects from this type expand arbitrarily
large up to available memory and are able to accommodate arbitrarily large numbers (up to the available memory).

Integers in a digital computer are manipulated by bit �elds called registers able to do bitwise operations and
operations on the whole �eld, such as ADD (add), ADC (add with carry), SUB (subtract), AND (and), OR (or),
etc. called instructions. There are number of �ags in the processor's Control and Status register that signal or
indicate about di�erent conditions that may have occurred. For example over�ow after an addition operation.
Depending on the number of bits in the register it is a variable of type Z2number−of−bits usually Z28 , Z216 , Z232 ,
Z264 , etc. and operate in the respective modular arithmetic. High level languages utilize the processor registers to
perform arithmetic and other operations on the content of the memory. Integer variables in high level languages are
byte arrays with su�cient size located in the memory and are designated with its name in the metaspace. When
an integer variable is larger than the largest register able to perform integer operations the compiler/assembly
programmer uses typically a loop and the status �ags applying the operation throughout the whole array working
in Z2number−of−bits−in−variable . Thus if a variable is 128 bit (16 bytes) and the largest arithmetic register is 16 bit,
the compiler will place a function call for every arithmetic operation on the variable. In the body of function will be
a loop from 1 to 16 iterations using appropriate processor instructions on only 16 bits (2 bytes) at a time achieving
correct results in Z2128 .

The Integer class from the Proper Numbers Library uses similar approach but instead using constant size arrays
to represents integers it uses a generic linked list. Each number is composited from one or more 64 bit words.
Arithmetic operations are implemented using set of appropriate fast algorithms. When operation is about to
produce a number with greater size then the current it is carried out adding more space to the number and thus
over�ows do not occur. Hence the integer class represents N (up to the available memory in the system). Shift to
right and subtraction decrease the size of the number (object). Empty number is not allowed. Zero is represented
with one 64 bit word set to zero. The Integer objects are maintained normalized which for this class means that
there are no leading zeroed 64 bit words - except for the one zero word for the 0. When subtracting larger number
from a smaller one the result wraps up and has the size of the larger number. The decrement operator has unusual
behaviour - it does NOT decrement below zero to avoid ambiguity.

Remarkably, the Integer class is a specialization of a linked list of type MList< unsigned __int64 >. When a
number is represented with an object of this type the underlying linked list is accelerated thus the words of the
number are accessed as an array achieving performance as if the numbers were indeed represented by an array.
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The integer class inherits the list as protected access and thus the methods of the underling list are not visible
(accessible) from an integer instance.

Object of type Integer throw NumberException only when dividing by zero. This behaviour may change in future
removing all exceptions altogether although this is not likely, or new operator with alternative behaviour may be
provided. The division operator returns a specialized as Quotient and Reminder pair thus helping to prevent errors.

The Boolean operators are NOT overloaded purposefully. The reason is that Integer numbers are NOT Boolean
entities and therefore they should not implicitly represent Boolean values. Should one want to use them as Boolean
variables they can use the IsZero() method and the comparison operators appropriately.

Objects from the Integer class are able to print themselves using the Print() method.

Remark. The Integer class represents N and not Z purposefully. This is necessary to maintain correct model without
redundancies. Signed integers Z ⊂ Q can be represented using rational numbers with denominator 1. Otherwise
there would be redundancies in the sign and computation of every rational number, which is a clear and de�nitive
indication for inconsistent model.

Figure 9. Class diagram of the Integer class from the Proper Numbers Library.
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Listing 6. The Integer class from the Proper Numbers Library. 
 
// 
// 
// Integer.h: Unsigned integer with arbitrary precision. 
// 
//                Proper Numbers Library 
// 
// © Copyright 2011 - 2011 by Miroslav Bonchev Bonchev. All rights reserved. 
// 
// 
//****************************************************************************************************** 
 
 
// Open Source License – The MIT License 
// 
// 
// {your product} uses the: Proper Numbers Library – Copyright © 2011 by Miroslav Bonchev Bonchev. All Rights Reserved. 
// {your product} uses the: Object Specialization Model – Copyright © 2009 - 2011 by Miroslav Bonchev Bonchev. All Rights Reserved. 
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 
// associated  documentation files  (the "Software"),  to deal  in the Software without restriction, 
// including  without  limitation the rights  to use,  copy,  modify,  merge,  publish,  distribute, 
// sublicense,  and/or sell copies of the Software,  and to permit persons to  whom the  Software is 
// furnished to do so, subject to the following conditions: 
// 
// The  above  copyright  notice  and  this  permission  notice  shall be  included in all copies or 
// substantial portions of the Software. 
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 
// NOT  LIMITED  TO  THE  WARRANTIES  OF  MERCHANTABILITY,  FITNESS  FOR  A  PARTICULAR  PURPOSE AND  
// NONINFRINGEMENT.  IN NO EVENT SHALL  THE  AUTHORS  OR  COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 
// DAMAGES OR OTHER LIABILITY,  WHETHER IN AN ACTION OF CONTRACT,  TORT OR OTHERWISE,  ARISING FROM, 
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
 
 
//__________________________________________________________________________________________________ 
// This software is OSI Certified Open Source Software. 
// OSI Certified is a certification mark of the Open Source Initiative. 
 
 
#pragma once 
 
 
#include "stdafx.h" 
#include "Common.h" 
#include "MAtom.h" 
#include "StringEx.h" 
#include "Pair.h" 
#include "Specialize.h" 
 
 
#pragma warning( push ) 
#pragma warning( disable : 4290 )   // warning C4290: C++ exception specification ignored except to indicate a function is not 
__declspec(nothrow) 
 
template< class dataType, bool bExceptions = true > 
class NumberException 
{ 
public: 
   enum Error 
   { 
      eIntegerDivisionByZero, 
      eNonCompatibleOperation 
   }; 
 
private: 
   Error eError; 
 
private: 
   NumberException( const Error excError )                    throw() : eError( excError ) {} 
 
public: 
   NumberException( const NumberException& objNumberException ) throw() : eError( objNumberException.eError ) {} 
   ~NumberException() {} 
 
   NumberException& operator=( const NumberException& objNumberException ) throw() { eError = objNumberException.eError; } 
 
public: 
   __forceinline static void TestDivisionByZero( typename const dataType muiDivisor ) throw( NumberException< dataType, bExceptions > ) 
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   { 
      if( 0 == muiDivisor ) 
      { 
         MASSERT( FALSE ); 
          
         bExceptions ? throw( NumberException< dataType, true >( NumberException::eIntegerDivisionByZero ) ) : 0; 
      } 
   } 
    
   __forceinline static void TestCompatibility( typename const dataType objLeft, typename const dataType objRight ) throw( NumberException< 
dataType, bExceptions > ) 
   { 
      if( !objLeft.IsCompatible( objRight ) ) 
      { 
         MASSERT( FALSE ); 
          
         bExceptions ? throw( NumberException< dataType, true >( NumberException::eNonCompatibleOperation ) ) : 0; 
      } 
   } 
}; 
 
#pragma warning( pop ) 
 
 
 
// The Integer class represents unsigned integer with arbitrary precision. 
// 
// Objects from this type expand arbitrarily large up to available memory and are able to accommodate 
// arbitrarily large numbers (up to the available memory). 
// 
// Some points of interest: 
// 
// Each number is composited from one or more 64 bit words. Arithmetic operations are implemented using 
// set of appropriate fast algorithms. When a number exceed the current size the operation is carried 
// out adding more space to the number thus overflow and truncation are inapplicable and hence it is 
// not possible to lose information for these reasons (provided there is enough memory in the system). 
// Shift to right and subtraction decrease the size of the number (object). Empty number is not allowed. 
// Zero is represented with one 64 bit word equal to zero. The objects are maintained normalized which 
// for this class means that there are no leading zeroed 64 bit words - except one zero word for the 0. 
// When subtracting larger number from smaller the result wraps and has the size of the larger number. 
// The decrement operator has unusual behaviour - it does NOT decrement below zero to avoid ambiguity. 
// 
// Semantically the Integer class is a specialization of a linked list of type MList< unsigned __int64 >. 
// When a number is represented with an object of this type the underlying linked list is accelerated thus 
// the words of the number are accessed as an array achieving performance as if the numbers were indeed 
// represented by an array. The integer class inherits as protected and thus the methods of the underling 
// list are not visible (accessible) from an integer instance. 
// 
// Currently object from the Integer type throw NumberException only when dividing by zero. This behaviour 
// may change in future removing all exceptions altogether although this is not likely, or new operator 
// with alternative behaviour will be provided. The division operator returns object specialized Quotient 
// and Reminder thus helping to prevent errors. 
// 
// The logical operators are NOT overloaded purposefully. The reason is that Integer numbers are NOT Boolean  
// entities and therefore they should not implicitly represent logical values. Should one want to use them  
// as Boolean variables they can use the IsZero() method and the comparison operators appropriately. 
// 
// Objects from the Integer class are able to print themselves using the Print() method. 
class Integer : protected MList< unsigned __int64 > 
{ 
   template< class classType, class classSpecializer > friend class specialize; 
 
private: 
   // Constructor for internal use creating skeleton of a number. 
   Integer( const Integer& integer, const DWORD dwSegmentCount ) 
   { 
      if( 0 != dwSegmentCount ) 
      { 
         *this = integer; 
 
         for( DWORD dwIndex = GetCount(); dwIndex < dwSegmentCount; dwIndex++ ) 
         { 
            AddTail( new unsigned __int64( 0 ) ); 
         } 
      } 
   } 
    
 
   // Removes any leading zeroes, but leave one last if the number is zero. "Empty" number is illegal. 
   Integer Normalize() 
   { 
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      while( (0 == *pTail->GetObject()) && (1 < GetCount()) ) 
      { 
         delete RemoveTail(); 
      } 
 
      if( IsEmpty() ) 
      { 
         AddHead( new unsigned __int64( 0 ) ); 
      } 
 
      return( *this ); 
   } 
 
 
public: 
   // Default constructor - initializes the object with zero. 
   Integer() : MList< unsigned __int64 >( (unsigned __int64)0 ) 
   { 
   } 
 
 
   // Initializes the object with native (unsigned) integer. 
   Integer( const unsigned __int64 uiInteger ) : MList< unsigned __int64 >( (unsigned __int64)uiInteger ) 
   { 
   } 
 
 
   // Copy constructor. 
   Integer( const Integer& integer ) : MList< unsigned __int64 >( integer ) 
   { 
   } 
 
 
   // Inherits virtual destructor. 
   ~Integer() 
   { 
   } 
 
 
   // Standard operator equal. 
   inline Integer& operator=( const Integer& integer ) 
   { 
      return( dynamic_cast< MList< unsigned __int64 >* >( this )->operator=( *dynamic_cast< const MList< unsigned __int64 >* >( &integer ) ), 
*this ); 
   } 
 
 
   // Test if the number is zero. 
   inline bool IsZero() const 
   { 
      return( (1 == GetCount()) && (0 == *(*this)[0]) ); 
   } 
 
 
   // Test if the number is even. 
   inline bool IsEven() const 
   { 
      return( 0 == (1 & *(*this)[0]) ); 
   } 
 
 
   // Test if the number is odd. 
   inline bool IsOdd() const 
   { 
      return( 1 == (1 & *(*this)[0]) ); 
   } 
 
 
   // Standard operator += 
   inline Integer operator +=( const Integer& iSummand ) 
   { 
      return( *this = ::operator +( *this, iSummand ) ); 
   } 
 
 
   // Standard operator -= 
   inline Integer operator -=( const Integer& iSubtrahend ) 
   { 
      return( *this = ::operator -( *this, iSubtrahend ) ); 
   } 
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   // Standard operator *= 
   inline Integer operator *=( const Integer& iFactor ) 
   { 
      return( *this = *this * iFactor ); 
   } 
    
 
   // Standard operator /= 
   inline Integer operator /=( const Integer& iDivisor ) 
   { 
      return( *this = (*this / iDivisor).GetLabelRef() ); 
   } 
 
    
   // Standard operator %= 
   inline Integer operator %=( const Integer& iDivisor ) 
   { 
      return( *this = (*this / iDivisor).GetValueRef() ); 
   } 
 
 
   // Standard operator &= 
   inline Integer operator &=( const Integer& iGate ) 
   { 
      return( *this = *this & iGate ); 
   } 
 
 
   // Standard operator |= 
   inline Integer operator |=( const Integer& iGate ) 
   { 
      return( *this = *this | iGate ); 
   } 
 
 
   // Standard operator ^= 
   inline Integer operator ^=( const Integer& iGate ) 
   { 
      return( *this = *this ^ iGate ); 
   } 
 
 
   // Standard operator <<= 
   inline Integer operator <<=( const Integer& iShiftCount ) 
   { 
      return( *this = *this << iShiftCount ); 
   } 
 
 
   // Standard operator >>= 
   inline Integer operator >>=( const Integer& iShiftCount ) 
   { 
      return( *this = *this >> iShiftCount ); 
   } 
 
 
   // Unary plus (returns the operand itself). 
   inline Integer operator+() const 
   { 
      return( *this ); 
   } 
 
 
   // Unary operator negation (two's complements – inverts the bits and adds one). 
   inline Integer operator-() const 
   { 
      if( IsZero() ) 
      { 
         return( *this  ); 
      } 
       
      Integer i( *this ); 
 
      for( DWORD dwIndex = 0; dwIndex < i.GetCount(); dwIndex++ ) 
      { 
         *i[dwIndex] = ~*i[dwIndex]; 
      } 
 
      i.IncrementFromSegment( 0 ); 
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      return( i ); 
   } 
 
 
   // Operator bitwise NOT (inverts all bits). 
   inline Integer operator ~() const 
   { 
      Integer i( *this ); 
 
      for( DWORD dwIndex = 0; dwIndex < i.GetCount(); dwIndex++ ) 
      { 
         *i[dwIndex] = ~*i[dwIndex]; 
      } 
 
      return( i ); 
   } 
 
 
   // Returns an integer power of this integer. 
   inline Integer ToPower( const Integer& uiPower ) const 
   { 
      Integer uiThis( 1 ); 
 
      for( Integer uiCount = 0; uiCount < uiPower; uiCount += 1 ) 
      { 
         uiThis = uiThis * *this; 
      } 
       
      return( uiThis ); 
   } 
 
 
   // Add one to the number - this instance. 
   inline Integer& Increment() 
   { 
      IncrementFromSegment( 0 ); 
 
      return( *this ); 
   } 
 
 
   // Prefix increment operator. 
   inline Integer& operator++() 
   { 
      Increment(); 
 
      return( *this ); 
   } 
 
 
   // Postfix increment operator. 
   inline Integer operator++( int ) 
   { 
      Integer uiThis( *this ); 
 
      Increment(); 
 
      return( uiThis ); 
   } 
 
 
   // Prefix decrement operator. Note it does NOT decrement below zero - since the number is 
   // of an arbitrary span it is ambiguous how large should the number be when decrementing 
   // it from zero. However since it is an unsigned integer the number will not be decremented 
   // below the zero, thus any decrement call after the number is already zero will be ignored. 
   inline Integer& operator--() 
   { 
      if( !IsZero() ) 
      { 
         *this = *this - 1; 
      } 
 
      return( *this ); 
   } 
 
 
   // Prefix decrement operator. Note it does NOT decrement below zero - since the number is 
   // of an arbitrary span it is ambiguous how large should the number be when decrementing 
   // it from zero. However since it is an unsigned integer the number will not be decremented 
   // below the zero, thus any decrement call after the number is already zero will be ignored. 
   inline Integer operator--( int ) 
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   { 
      Integer uiThis( *this ); 
 
      if( !IsZero() ) 
      { 
         *this = *this - 1; 
      } 
 
      return( uiThis ); 
   } 
 
 
   // Return ONE based index of the most significant 1, therefore returning 0 implies 
   // that the number is zero. Divide this method’s return value mod 64 plus one to 
   // get the number of 64 bit words used in the representation of the number. 
   inline unsigned __int64 GetMostSignificantOneIndex() const 
   { 
      const unsigned __int64 uiMSB( *GetTail() ); 
 
      for( unsigned __int64 uiWindow = ((unsigned __int64)1) << 63, uiIndex = 64; 0 != uiWindow; uiWindow >>= 1, uiIndex-- ) 
      { 
         if( 0 != (uiMSB & uiWindow) ) 
         { 
            return( (GetCount() - 1) * 8 * sizeof( unsigned __int64 ) + uiIndex ); 
         } 
      } 
 
      return( 0 ); 
   } 
 
 
   // Return a string object containing the decimal representation of the number. 
   MStringEx< TCHAR > Print() const 
   { 
      MList< BYTE > listResult( new BYTE( 0 ), NULL ); 
      MList< BYTE > list2Power( new BYTE( 1 ), NULL ); 
 
      // One based index of the most significant one - zero implies tho ones at all. 
      unsigned __int64 uiMSBitIndex( GetMostSignificantOneIndex() ); 
 
      if( 0 < uiMSBitIndex ) 
      { 
         unsigned __int64 uiCurrentIndex( 0 ); 
          
         // Head is LSB, Tail is MSB 
         for( DWORD dwSegment = 0; dwSegment < GetCount(); dwSegment++ ) 
         { 
            for( unsigned __int64 uiWindow = 1; 0 != uiWindow; uiCurrentIndex++, uiWindow <<= 1 ) 
            { 
               if( 0 != (*(*this)[dwSegment] & uiWindow) ) 
               { 
                  AddDecimal( listResult, list2Power ); 
               } 
 
               if( uiCurrentIndex >= uiMSBitIndex ) 
               { 
                  break; 
               } 
 
               MultiplyDecimalBy2( list2Power ); 
            } 
         } 
      } 
 
      MStringEx< TCHAR > strNumber; 
      for( DWORD dwIndex = 0; dwIndex < listResult.GetCount(); dwIndex++ ) 
      { 
         strNumber = MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("%d"), *listResult[dwIndex] ) + strNumber; 
      } 
 
      return( strNumber ); 
   } 
 
 
   // Return the quotient part from the division of this number by another integer. 
   // This method uses the division operator. It is more efficient to use the division 
   // operator directly if you also need the reminder part from tis division. 
   inline Integer DivideBy_ReturnQuotient( const Integer& iDivisor ) const 
   { 
      return( operator /( *this, iDivisor ).GetLabelRef() ); 
   } 
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   // Return the reminder part from the division of this number by another integer. 
   // This method uses the division operator. It is more efficient to use the division 
   // operator directly if you also need the quotient part from tis division. 
   inline Integer DivideBy_ReturnReminder( const Integer& iDivisor ) const 
   { 
      return( operator /( *this, iDivisor ).GetValueRef() ); 
   } 
 
 
   // Shift to left. 
   inline Integer& Shift2Left( const unsigned __int64 uiTimes ) 
   { 
      if( !IsZero() && (0 != uiTimes) ) 
      { 
         const unsigned __int64 uiNewSegments( uiTimes / 64 ); 
 
         // The Head is Least Significant Part, and the Tail is Most Significant Part so compute Headt-to-Tail. 
         // Add one empty segment at the head, i.e. least segnificant part, for every 64 bit shift to the left. 
         for( Integer iSegment = 0; iSegment < uiNewSegments; iSegment++ ) 
         { 
            AddHead( new unsigned __int64( 0 ) ); 
         } 
 
 
         const BYTE b1BitIncShift( uiTimes % 64 ); 
 
         if( 0 != b1BitIncShift ) 
         { 
            // Division by 64 cannot have remiander bigger than 63. 
            MASSERT( b1BitIncShift < 64 ); 
 
            // Head - LSB, Tail - MSB. 
            unsigned __int64 uiCarry( 0 ); 
            for( DWORD dwIndex = 0; dwIndex < GetCount(); dwIndex++ ) 
            { 
               const unsigned __int64 bNewCarry( *(*this)[dwIndex] >> (64 - b1BitIncShift) ); 
 
               *(*this)[dwIndex] <<= b1BitIncShift; 
               *(*this)[dwIndex] |=  uiCarry; 
 
               uiCarry = bNewCarry; 
            } 
 
            if( 0 != uiCarry ) 
            { 
               AddTail( new unsigned __int64( uiCarry ) ); 
            } 
         } 
      } 
 
      return( *this ); 
   } 
    
 
   // Shift to right. 
   inline Integer& Shift2Right( const unsigned __int64 uiTimes ) 
   { 
      if( !IsZero() && (0 != uiTimes) ) 
      { 
         const unsigned __int64 uiDelSegments( uiTimes / 64 ); 
 
         // The Head is Least Significant Part, and the Tail is Most Significant Part so compute Headt-to-Tail. 
         // Remove one segment from the head, i.e. least segnificant part, for every 64 bit shift to the right. 
         for( unsigned __int64 uiSegment = 0; (uiSegment < uiDelSegments) && !IsEmpty(); uiSegment++ ) 
         { 
            delete RemoveHead(); 
         } 
 
         if( !IsEmpty() ) 
         { 
            const BYTE b1BitIncShift( uiTimes % 64 ); 
 
            if( 0 != b1BitIncShift ) 
            { 
               // Division by 64 cannot have remiander bigger than 63. 
               MASSERT( b1BitIncShift < 64 ); 
 
               // Head - LSB, Tail - MSB. 
               unsigned __int64 uiCarry( 0 ); 
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               for( DWORD dwIndex = GetCount() - 1; (DWORD)-1 != dwIndex; dwIndex-- ) 
               { 
                  const unsigned __int64 bNewCarry( *(*this)[dwIndex] << (64 - b1BitIncShift) ); 
 
                  *(*this)[dwIndex] >>= b1BitIncShift; 
                  *(*this)[dwIndex] |=  uiCarry; 
 
                  uiCarry = bNewCarry; 
               } 
            } 
         } 
      } 
 
      // Lose any newly created leading zeros or emptied object. 
      Normalize(); 
 
      return( *this ); 
   } 
 
 
   // This method attempts to represent the integer number as double precision floating point number.  
   // Note that a number from the Integer class may be much larger than the larger number that a double  
   // precision floating point could represent. Also, note that floating point numbers are not evenly  
   // distributed having irregularly sized gaps between them. In difference the Integer numbers are  
   // evenly distributed. This means that Integer numbers could be in fact very rarely represented  
   // exactly using a floating point number. This function is useful for displaying Integer numbers. 
   double GetAsDouble() const 
   { 
      // The algorithm is to multiply the double 1 by *this and keep the result in a double variable. 
      if( IsZero() ) 
      { 
         return( 0 ); 
      } 
 
 
      Integer  iFactor( *this ); 
      double   dThis( 0 ); 
      double   dFactor( 1 ); 
 
      while( 0 != iFactor ) 
      { 
         if( iFactor.Shift2Right() ) 
         { 
            // There was a right carry. 
            dThis += dFactor; 
         } 
 
         dFactor *= 2; 
      } 
 
      return( dThis ); 
   } 
 
 
private: 
   // Shift to right with one bit. Returns true if one has been  
   // lost by the shift and false if zero was removed (lost). 
   inline bool Shift2Right() 
   { 
      bool bRightCarry( false ); 
 
      // Head - LSB, Tail - MSB. 
      for( DWORD dwIndex = GetCount() - 1; (DWORD)-1 != dwIndex; dwIndex-- ) 
      { 
         const bool bNewRightCarry( 1 & (*(*this)[dwIndex]) ); 
 
         (*(*this)[dwIndex]) >>= 1; 
 
         if( bRightCarry ) 
         { 
            (*(*this)[dwIndex]) |= (((unsigned __int64)1) << 63); 
         } 
 
         bRightCarry = bNewRightCarry; 
      } 
 
      // Lose any newly created leading zeros. 
      Normalize(); 
 
      return( bRightCarry ); 
   } 
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   inline void AddDecimal( MList< BYTE >& listResult, const MList< BYTE >& list2Power ) const 
   { 
      const DWORD dwLoopCount( MMAX< DWORD, DWORD, DWORD >( listResult.GetCount(), list2Power.GetCount() ) ); 
 
      BYTE b1Carry( 0 ); 
      for( DWORD dwSegment = 0; dwSegment < dwLoopCount; dwSegment++ ) 
      { 
         // The Head is Least Significant Part, and the Tail is Most Significant Part so compute Head-to-Tail. 
         BYTE b1This( b1Carry ); 
         if( listResult.GetCount() > dwSegment ) 
         { 
            b1This += *listResult[dwSegment]; 
         } 
 
         if( list2Power.GetCount() > dwSegment ) 
         { 
            b1This += *list2Power[dwSegment]; 
         } 
 
 
         if( 9 < b1This ) 
         { 
            b1This -= 10; 
            b1Carry = 1; 
         } 
         else 
         { 
            b1Carry = 0; 
         } 
 
 
         if( listResult.GetCount() > dwSegment ) 
         { 
            *listResult[dwSegment] = b1This; 
         } 
         else 
         { 
            listResult.AddTail( new BYTE( b1This ) ); 
         } 
      } 
 
      if( 0 != b1Carry ) 
      { 
         listResult.AddTail( new BYTE( b1Carry ) ); 
      } 
   } 
 
 
   inline void MultiplyDecimalBy2( MList< BYTE >& list2Power ) const 
   { 
      BYTE b1Carry( 0 ); 
 
      // Head is LSS, Tail is MSS 
      for( DWORD dwSegment = 0; dwSegment < list2Power.GetCount(); dwSegment++ ) 
      { 
         BYTE b1New = 2 * (*list2Power[dwSegment]) + b1Carry; 
 
         if( 9 < b1New ) 
         { 
            *list2Power[dwSegment] = b1New - 10; 
 
            b1Carry = 1; 
         } 
         else 
         { 
            *list2Power[dwSegment] = b1New; 
 
            b1Carry = 0; 
         } 
      } 
 
      if( 0 != b1Carry ) 
      { 
         list2Power.AddTail( new BYTE( b1Carry ) ); 
      } 
   } 
 
 
   inline void IncrementFromSegment( const DWORD dwSegment ) 
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   { 
      if( dwSegment < GetCount() ) 
      { 
         // Head LSB, Tail MSB. 
         if( (unsigned __int64)-1 > *(*this)[dwSegment] ) 
         { 
            (*(*this)[dwSegment])++; 
         } 
         else 
         { 
            (*(*this)[dwSegment]) = 0; 
 
            IncrementFromSegment( dwSegment + 1 ); 
         } 
      } 
      else 
      { 
         AddTail( new unsigned __int64( 1 ) ); 
      } 
   } 
 
 
   // External operators - friend operators. 
 
 
   // Standard comparison operator equal to. 
   friend bool operator ==( const Integer& iLeft, const Integer& iRight ) 
   { 
      if( iLeft.GetCount() != iRight.GetCount() ) 
      { 
         return( false ); 
      } 
 
      for( DWORD dwIndex = 0; dwIndex < iLeft.GetCount(); dwIndex++ ) 
      { 
         if( *iLeft[dwIndex] != *iRight[dwIndex] ) 
         { 
            return( false ); 
         } 
      } 
 
      return( true ); 
   } 
 
    
   // Standard comparison operator not equal to. 
   friend bool operator !=( const Integer& rLeft, const Integer& rRight ) 
   { 
      return( !::operator==( rLeft, rRight ) ); 
   } 
 
 
   // Standard comparison operator less than. 
   friend inline bool operator <( const Integer& iLeft, const Integer& iRight ) 
   { 
      if( iLeft.GetCount() == iRight.GetCount() ) 
      { 
         // When equal size-in-part compare part by part. Compare from Tail to Head, since 
         // the Head is Least Significant Part, and the Tail is Most Significant Part. 
         for( DWORD dwIndex = iLeft.GetCount() - 1; (DWORD)-1 > dwIndex; dwIndex-- ) 
         { 
            if( *iLeft[dwIndex] != *iRight[dwIndex] ) 
            { 
               return( *iLeft[dwIndex] < *iRight[dwIndex] ); 
            } 
         } 
 
         // All parts are equal, so false. 
         return( false ); 
      } 
 
      return( iLeft.GetCount() < iRight.GetCount() ); 
   } 
 
 
   // Standard comparison operator greater than. 
   friend inline bool operator >( const Integer& iLeft, const Integer& iRight ) 
   { 
      if( iLeft.GetCount() == iRight.GetCount() ) 
      { 
         // When equal size-in-part compare part by part. Compare from Tail to Head, since 
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         // the Head is Least Significant Part, and the Tail is Most Significant Part. 
         for( DWORD dwIndex = iLeft.GetCount() - 1; (DWORD)-1 > dwIndex; dwIndex-- ) 
         { 
            if( *iLeft[dwIndex] != *iRight[dwIndex] ) 
            { 
               return( *iLeft[dwIndex] > *iRight[dwIndex] ); 
            } 
         } 
 
         // All parts are equal, so false. 
         return( false ); 
      } 
 
      return( iLeft.GetCount() > iRight.GetCount() ); 
   } 
 
 
   // Standard comparison operator less than or equal to. 
   friend inline bool operator <=( const Integer& iLeft, const Integer& iRight ) 
   { 
      if( iLeft.GetCount() == iRight.GetCount() ) 
      { 
         // When equal size-in-part compare part by part. Compare from Tail to Head, since 
         // the Head is Least Significant Part, and the Tail is Most Significant Part. 
         for( DWORD dwIndex = iLeft.GetCount() - 1; (DWORD)-1 > dwIndex; dwIndex-- ) 
         { 
            if( *iLeft[dwIndex] != *iRight[dwIndex] ) 
            { 
               return( *iLeft[dwIndex] <= *iRight[dwIndex] ); 
            } 
         } 
 
         // All parts are equal, so equal. 
         return( true ); 
      } 
 
      return( iLeft.GetCount() < iRight.GetCount() ); 
   } 
 
 
   // Standard comparison operator greater than or equal to. 
   friend inline bool operator >=( const Integer& iLeft, const Integer& iRight ) 
   { 
      if( iLeft.GetCount() == iRight.GetCount() ) 
      { 
         // When equal size-in-part compare part by part. Compare from Tail to Head, since 
         // the Head is Least Significant Part, and the Tail is Most Significant Part. 
         for( DWORD dwIndex = iLeft.GetCount() - 1; (DWORD)-1 > dwIndex; dwIndex-- ) 
         { 
            if( *iLeft[dwIndex] != *iRight[dwIndex] ) 
            { 
               return( *iLeft[dwIndex] >= *iRight[dwIndex] ); 
            } 
         } 
 
         // All parts are equal, so equal. 
         return( true ); 
      } 
 
      return( iLeft.GetCount() > iRight.GetCount() ); 
   } 
 
 
   // Standard arithmetic operator plus. 
   friend inline Integer operator +( const Integer& iSummandL, const Integer& iSummandR ) 
   { 
      // Create an empty result. 
      Integer iResult( iSummandL, 0 ); 
 
      const DWORD dwLoopCount( MMAX< DWORD, DWORD, DWORD >( iSummandL.GetCount(), iSummandR.GetCount() ) ); 
 
      unsigned __int64 uiCarry( 0 ); 
      for( DWORD dwIndex = 0; dwIndex < dwLoopCount; dwIndex++ ) 
      { 
         // The Head is Least Significant Part, and the Tail is Most Significant Part so compute Headt-to-Tail. 
 
         unsigned __int64 uiLeft( 0 ); 
         if( iSummandL.GetCount() > dwIndex ) 
         { 
            uiLeft = *iSummandL[dwIndex]; 
         } 
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         unsigned __int64 uiRight( 0 ); 
         if( iSummandR.GetCount() > dwIndex ) 
         { 
            uiRight = *iSummandR[dwIndex]; 
         } 
 
         iResult.AddTail( new unsigned __int64( uiLeft + uiRight + uiCarry ) ); 
 
         // Find out if there is a carry. 
         unsigned __int64 uiOverflow( (unsigned __int64)-1 - uiLeft ); 
 
         if( uiOverflow < uiRight ) 
         { 
            // There was a carry; 
            uiCarry = 1; 
 
            continue; 
         } 
 
         uiOverflow -= uiRight; 
 
         uiCarry = uiOverflow < uiCarry ? 1 : 0; 
      } 
 
      if( 0 != uiCarry ) 
      { 
         MASSERT( 1 == uiCarry ); 
 
         iResult.AddTail( new unsigned __int64( uiCarry ) ); 
      } 
 
      if( 0 == iResult.GetCount() ) 
      { 
         iResult.AddTail( new unsigned __int64( 0 ) ); 
      } 
 
      return( iResult ); 
   } 
 
 
   // Standard arithmetic operator minus. When subtracting larger number from smaller 
   // the result wraps up and has the size of the larger number, i.e. A > B; C = B - A; 
   // [size C == size A] = [size B] - [size A], C = 0 - ( A - B ). 
   friend inline Integer operator -( Integer iMinuend, Integer iSubtrahend ) 
   { 
      // Create an empty result. 
      Integer iResult( iMinuend, 0 ); 
 
      const DWORD dwLoopCount( MMAX< DWORD, DWORD, DWORD >( iMinuend.GetCount(), iSubtrahend.GetCount() ) ); 
 
      // Create equal elements countinteger numbers. 
      iMinuend = Integer( iMinuend, dwLoopCount ); 
      iSubtrahend = -Integer( iSubtrahend, dwLoopCount ); 
 
      unsigned __int64 uiCarry( 0 ); 
      for( DWORD dwIndex = 0; dwIndex < dwLoopCount; dwIndex++ ) 
      { 
         // The Head is Least Significant Part, and the Tail is Most Significant Part so compute Headt-to-Tail. 
         const unsigned __int64 uiLeft( *iMinuend[dwIndex] ); 
         const unsigned __int64 uiRight( *iSubtrahend[dwIndex] ); 
 
         iResult.AddTail( new unsigned __int64( uiLeft + uiRight + uiCarry ) ); 
 
         // Find out if there is a carry. 
         unsigned __int64 uiOverflow( (unsigned __int64)-1 - uiLeft ); 
 
         if( uiOverflow < uiRight ) 
         { 
            // There was a carry; 
            uiCarry = 1; 
 
            continue; 
         } 
 
         uiOverflow -= uiRight; 
 
         uiCarry = uiOverflow < uiCarry ? 1 : 0; 
      } 
 
      if( 0 == iResult.GetCount() ) 
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      { 
         iResult.AddTail( new unsigned __int64( 0 ) ); 
      } 
 
      // Note that in subtraction I ignore the most significant Carry. 
      return( iResult.Normalize() ); 
   } 
 
 
   // Standard arithmetic operator multiplication. 
   friend inline Integer operator *( const Integer& iFactorL, const Integer& iFactorR ) 
   { 
      // Fast multiplication algorithm. Push the shorther to the right amending the longer. 
      Integer iShorter( iFactorL < iFactorR ? iFactorL : iFactorR ); 
      Integer iLonger( iFactorL > iFactorR ? iFactorL : iFactorR ); 
 
      // Create an empty result. 
      Integer iResult( iFactorL, 0 ); 
 
      while( 0 != iShorter ) 
      { 
         if( iShorter.Shift2Right() ) 
         { 
            // There was a right carry. 
            iResult += iLonger; 
         } 
 
         iLonger.Shift2Left( 1 ); 
      } 
 
      if( 0 == iResult.GetCount() ) 
      { 
         iResult.AddTail( new unsigned __int64( 0 ) ); 
      } 
 
      return( iResult ); 
   } 
 
 
   // Standard arithmetic operator division. The division operator returns a pair of specialized integers 
   // for quotient and reminder. This operator throws NumberException exception when dividing by zero. 
   friend inline Pair< specialize< Integer as sX::Quotient >, specialize< Integer as sX::Reminder > > operator /( Integer iDividend, Integer 
iDivisor ) 
   { 
      NumberException< Integer, true >::TestDivisionByZero( iDivisor ); 
 
      // Fast division algorithm. Push the shorther to the right amending the longer. 
      unsigned __int64 uiMS1_Divisor( iDivisor.GetMostSignificantOneIndex() ); 
      specialize< Integer as sX::Quotient > iQuotient( specialize< Integer as sX::Quotient >::Initialize( 0 ) ); 
 
      while( iDividend >= iDivisor ) 
      { 
         unsigned __int64 uiMS1_Divident( iDividend.GetMostSignificantOneIndex() ); 
         unsigned __int64 uiOrderDifference( uiMS1_Divident - uiMS1_Divisor ); 
 
         Integer iExpandedDivisor( iDivisor ); 
         iExpandedDivisor.Shift2Left( uiOrderDifference ); 
 
         if( iDividend < iExpandedDivisor ) 
         { 
            uiOrderDifference--; 
            iExpandedDivisor.Shift2Right(); 
         } 
 
         iQuotient += Integer( 1 ).Shift2Left( uiOrderDifference ); 
         iDividend -= iExpandedDivisor; 
      } 
 
      return( Pair< specialize< Integer as sX::Quotient >, specialize< Integer as sX::Reminder > >( iQuotient, specialize< Integer as 
sX::Reminder >::Initialize( iDividend ) ) ); 
   } 
 
 
   // Standard arithmetic operator modulo. 
   friend inline Integer operator %( const Integer& iDividend, const Integer& iDivisor ) 
   { 
      return( operator /( iDividend, iDivisor ).GetValueRef() ); 
   } 
 
 
   // Bitwise AND operator. 
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   friend inline Integer operator &( const Integer& iGateL, const Integer& iGateR ) 
   { 
      // Create an empty result. 
      Integer iResult( iGateL, 0 ); 
 
      const DWORD dwLoopCount( MMIN< DWORD, DWORD, DWORD >( iGateL.GetCount(), iGateR.GetCount() ) ); 
 
      for( DWORD dwIndex = 0; dwIndex < dwLoopCount; dwIndex++ ) 
      { 
         // The Head is Least Significant Part, and the Tail is Most Significant Part so compute Headt-to-Tail. 
         iResult.AddTail( new unsigned __int64( *iGateL[dwIndex] & *iGateR[dwIndex] ) ); 
      } 
 
      MASSERT( 0 != iResult.GetCount() ); 
 
      return( iResult ); 
   } 
 
 
   // Bitwise OR operator. 
   friend inline Integer operator |( const Integer& iGateL, const Integer& iGateR ) 
   { 
      // Create an empty result. 
      Integer iResult( iGateL, 0 ); 
 
      const DWORD dwLoopCount( MMAX< DWORD, DWORD, DWORD >( iGateL.GetCount(), iGateR.GetCount() ) ); 
 
      for( DWORD dwIndex = 0; dwIndex < dwLoopCount; dwIndex++ ) 
      { 
         // The Head is Least Significant Part, and the Tail is Most Significant Part so compute Headt-to-Tail. 
 
         unsigned __int64 uiLeft( 0 ); 
         if( iGateL.GetCount() > dwIndex ) 
         { 
            uiLeft = *iGateL[dwIndex]; 
         } 
 
         unsigned __int64 uiRight( 0 ); 
         if( iGateR.GetCount() > dwIndex ) 
         { 
            uiRight = *iGateR[dwIndex]; 
         } 
 
         iResult.AddTail( new unsigned __int64( uiLeft | uiRight ) ); 
      } 
 
      return( iResult ); 
   } 
 
 
   // Bitwise XOR operator. 
   friend inline Integer operator ^( const Integer& iGateL, const Integer& iGateR ) 
   { 
      // Create an empty result. 
      Integer iResult( iGateL, 0 ); 
 
      const DWORD dwLoopCount( MMAX< DWORD, DWORD, DWORD >( iGateL.GetCount(), iGateR.GetCount() ) ); 
 
      for( DWORD dwIndex = 0; dwIndex < dwLoopCount; dwIndex++ ) 
      { 
         // The Head is Least Significant Part, and the Tail is Most Significant Part so compute Headt-to-Tail. 
 
         unsigned __int64 uiLeft( 0 ); 
         if( iGateL.GetCount() > dwIndex ) 
         { 
            uiLeft = *iGateL[dwIndex]; 
         } 
 
         unsigned __int64 uiRight( 0 ); 
         if( iGateR.GetCount() > dwIndex ) 
         { 
            uiRight = *iGateR[dwIndex]; 
         } 
 
         iResult.AddTail( new unsigned __int64( uiLeft ^ uiRight ) ); 
      } 
 
 
      // XOR may cause non zero operands to produce zero result 
      iResult.Normalize(); 
 



52 
 

      return( iResult ); 
   } 
 
 
   // Shift to left operator. This operator may allocate significant amount of system resources if used without care. Passing  
   // large number of left shifts will incur adding a new 64 bit segment to the result for every 64 units in the shift request. 
   friend inline Integer operator <<( const Integer& iThisObject, const Integer& iShiftCount ) 
   { 
      if( iThisObject.IsZero() ) 
      { 
         return( Integer( 0 ) ); 
      } 
 
      Integer iResult( iThisObject ); 
 
      if( !iShiftCount.IsZero() ) 
      { 
         const Pair< specialize< Integer as sX::Quotient >, specialize< Integer as sX::Reminder > > prDivision( iShiftCount / 64 ); 
 
         // The Head is Least Significant Part, and the Tail is Most Significant Part so compute Headt-to-Tail. 
         // Add one empty segment at the head, i.e. least segnificant part, for every 64 bit shift to the left. 
         for( Integer iSegment = 0; iSegment < prDivision.GetLabelRef(); iSegment++ ) 
         { 
            iResult.AddHead( new unsigned __int64( 0 ) ); 
         } 
 
         // Division by 64 cannot have remiander bigger than 63. 
         MASSERT( prDivision.GetValueRef() < 64 ); 
 
         // Shift for the remainder, 64 is well held in one segment. 
         iResult.Shift2Left( *prDivision.GetValueRef().GetTail() ); 
      } 
 
      return( iResult ); 
   } 
 
 
   // Shift to right operator. 
   friend inline Integer operator >>( const Integer& iThisObject, const Integer& iShiftCount ) 
   { 
      if( iThisObject.IsZero() ) 
      { 
         return( Integer( 0 ) ); 
      } 
 
      Integer iResult( iThisObject ); 
 
      if( !iShiftCount.IsZero() ) 
      { 
         const Pair< specialize< Integer as sX::Quotient >, specialize< Integer as sX::Reminder > > prDivision( iShiftCount / 64 ); 
 
         // The Head is Least Significant Part, and the Tail is Most Significant Part so compute Headt-to-Tail. 
         // Remove one segment from the head, i.e. least segnificant part, for every 64 bit shift to the right. 
         for( Integer iSegment = 0; (iSegment < prDivision.GetLabelRef()) && (0 < iResult.GetCount()); iSegment++ ) 
         { 
            delete iResult.RemoveHead(); 
         } 
 
         // Division by 64 cannot have remiander bigger than 63. 
         MASSERT( prDivision.GetValueRef() < 64 ); 
 
         // Shift for the remainder, 64 is well held in one segment. 
         iResult.Shift2Right( *prDivision.GetValueRef().GetTail() ); 
      } 
 
      return( iResult ); 
   } 
}; 
 



4.2.2. The Rational Class Template

The RationalTBase template class represents rational numbers over an unspeci�ed specializer which must be at
least a commutative ring with identity (CRI). The rational entities are represented by a sign and an ordered pair
of numerator and denominator. The objects are always normalized, i.e. the numerator and denominator are always
coprime. When RationalTBase is specialized with the Integer class (which represents N (up to available memory))
the resulting type represents Q (up to available memory), i.e. the objects of type RationalTBase< Integer > are
rational numbers with arbitrary precision and even distribution, thus they are perfect for precise computations. It
is possible to use other types of underlying CRIs, such as unsigned char - Z28 , unsigned short - Z216 , unsigned int
- Z232 , unsigned long - Z232 , unsigned __int64 - Z264 , etc. or applicable user de�ned types. Being a commutative
ring with identity the specializer is expected to have all appropriate operators de�ned.

The behaviour of the type is determined by its own nature and also by the behaviour of the underlying CRI. For
example over�ows (when applicable) may or may not be signalled depending on the behaviour of the underlying
ring. RationalTBase throws NumberException only when dividing by zero. This behaviour may change in future
removing all exceptions altogether although this is not likely, or new operator with alternative behaviour will be
provided.

RationalTBase has Boolean and bitwise operators NOT overloaded purposefully. The reason is that rational num-
bers are not Boolean or bit-�eld entities and therefore should not implicitly represent them. Objects from the
rational class are able to print themselves in various ways.

The Rational is a type de�nition, specialization of RationalTBase with the Integer class representing arbitrary
precision rational numbers. It is ideal for use when precise computations are required. For example the usually
used for computation �oating point numbers have over�ows and under�ows and rarely represent a number precisely.
They have accumulative errors, thus the more they are used the bigger the error. In addition they are denser around
the zero and further apart from each other as going away from the zero. The Rational have no such �aws. Another
advantage is that the Rational is itself a commutative ring with identity (CRI) with all appropriate operators and
thus can be used whenever ring is needed.

Figure 10. Class diagram of the RationalTBBase template and Rational specialization type from the Proper Numbers Library.
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Listing 7. The RationalTBase template and Rational specialization type from the Proper Numbers Library. 
 
// 
// 
// Rational.h: Rational with arbitrary precision. 
// 
//                Proper Numbers Library 
// 
// © Copyright 2011 - 2011 by Miroslav Bonchev Bonchev. All rights reserved. 
// 
// 
//****************************************************************************************************** 
 
 
// Open Source License – The MIT License 
// 
// 
// {your product} uses the: Proper Numbers Library – Copyright © 2011 by Miroslav Bonchev Bonchev. All Rights Reserved. 
// {your product} uses the: Object Specialization Model – Copyright © 2009 - 2011 by Miroslav Bonchev Bonchev. All Rights Reserved. 
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 
// associated  documentation files  (the "Software"),  to deal  in the Software without restriction, 
// including  without  limitation the rights  to use,  copy,  modify,  merge,  publish,  distribute, 
// sublicense,  and/or sell copies of the Software,  and to permit persons to  whom the  Software is 
// furnished to do so, subject to the following conditions: 
// 
// The  above  copyright  notice  and  this  permission  notice  shall be  included in all copies or 
// substantial portions of the Software. 
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 
// NOT  LIMITED  TO  THE  WARRANTIES  OF  MERCHANTABILITY,  FITNESS  FOR  A  PARTICULAR  PURPOSE AND  
// NONINFRINGEMENT.  IN NO EVENT SHALL  THE  AUTHORS  OR  COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 
// DAMAGES OR OTHER LIABILITY,  WHETHER IN AN ACTION OF CONTRACT,  TORT OR OTHERWISE,  ARISING FROM, 
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
 
 
//__________________________________________________________________________________________________ 
// This software is OSI Certified Open Source Software. 
// OSI Certified is a certification mark of the Open Source Initiative. 
 
 
#pragma once 
 
 
#include "stdafx.h" 
#include "Common.h" 
#include "StringEx.h" 
#include "Specialize.h" 
#include "Integer.h" 
 
 
#define Minus_Char_TextSize         L"22" 
#define Rational_Notation_TextSize  L"12" 
#define Decimal_Notation_TextSize   L"12" 
 
 
// The RationalTBase template class represents signed rational numbers over an unspecified specializer filed. 
// The Rational is a specialization of RationalTBase with the Integer class representing arbitrary precision  
// signed rational numbers. 
// 
// Objects from type Rational expand arbitrarily large up to available memory and are able to accommodate 
// arbitrarily large numbers with arbitrary precision (up to the available memory). 
// 
// Some points of interest: 
// 
// The rational numbers are represented by a sign and an ordered pair of numerator and denominator elements 
// of the underlying commutative ring with identity CRI (the specialiser of the template). When the template 
// is specialized with the Integer class, which represents an arbitrarily large unsigned integer numbers, the 
// Rational numbers represented by this class become with arbitrary precision and even distribution numbers,  
// thus become perfect for precise computations. It is possible to use other types of underlying rings (CRI), 
// such as BYTE, thus creating Rational Numbers over Z[2^8], unsigned short achieving rational numbers over  
// Z[2^16], unsigned int achieving rational numbers over Z[2^32], unsigned __int64 achieving rational numbers 
// over Z[2^64], etc. 
// 
// Overflow may or may not be signalled depending on the behaviour of the underlying CRI. For example since  
// the numbers from the Integer class never overflow, but instead they grow thus maintaining their integrity,  
// Rational specialized with Integer never overflows and is always correct. The build in types on the other  
// hand ignore any overflows, hence Rational specialized with build in type may become erroneous without  
// signalling the overflow. Other specializer types may or may not signal overflow in accordance with their  
// behaviour. Numbers of Rational type are always normalized so that the numerator and denominator are always  
// coprime. 
// 
// Objects from this type throw NumberException only when dividing by zero. This behaviour 
// may change in future removing all exceptions altogether although this is not likely, or new operator 
// with alternative behaviour will be provided. 
// 
// The logical operators are NOT overloaded purposefully. The reason is that rational numbers are NOT Boolean 
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// entities and therefore they should not implicitly represent logical values. Should one want to use them 
// as Boolean variables they can use the IsZero() method and the comparison operators appropriately. 
// 
// Bitwise operators are NOT overloaded purposefully as not applicable for a rational type. 
// 
// Objects from the rational class are able to print themselves in various ways. 
template< class UnderlingCRI > 
class RationalTBase 
{ 
private: 
   bool bNegative; 
   specialize< UnderlingCRI as sX::Numerator >   uiN; 
   specialize< UnderlingCRI as sX::Denominator > uiD; 
 
 
public: 
   // Default constructor - initializes the object with zero. 
   RationalTBase() 
      :  bNegative( false ), 
         uiN( specialize< UnderlingCRI as sX::Numerator >::Initialize( 0 ) ), 
         uiD( specialize< UnderlingCRI as sX::Denominator >::Initialize( 1 ) ) 
   { 
   } 
 
 
   // Constructor from signed integer. 
   RationalTBase( const __int64 nInteger ) 
      :  bNegative( 0 > nInteger ), 
         uiN( specialize< UnderlingCRI as sX::Numerator >::Initialize( MABSsat< UnderlingCRI, __int64 >( nInteger ) ) ), 
         uiD( specialize< UnderlingCRI as sX::Denominator >::Initialize( 1 ) ) 
   { 
      Normalize(); 
   } 
 
 
   // Copy constructor. 
   RationalTBase( const RationalTBase< UnderlingCRI >& rational ) 
      :  bNegative( rational.bNegative ), 
         uiN( rational.uiN ), 
         uiD( rational.uiD ) 
   { 
   } 
 
 
   // Constructor from unsigned Integer. 
   RationalTBase( const specialize< UnderlingCRI as sX::Numerator >& uiNumerator ) 
      :  bNegative( false ), 
         uiN( uiNumerator ), 
         uiD( specialize< UnderlingCRI as sX::Denominator >::Initialize( 1 ) ) 
   { 
      Normalize(); 
   } 
 
 
   // Constructor from signed and numerator, and denominator. 
   RationalTBase( const bool bNegative, 
                  const specialize< UnderlingCRI as sX::Numerator >& uiNumerator ) 
      :  bNegative( bNegative ), 
         uiN( uiNumerator ), 
         uiD( specialize< UnderlingCRI as sX::Denominator >::Initialize( 1 ) ) 
   { 
      Normalize(); 
   } 
 
 
   // Constructor from unsigned numerator and denominator. 
   RationalTBase( const specialize< UnderlingCRI as sX::Numerator >& uiNumerator, 
                  const specialize< UnderlingCRI as sX::Denominator >& uiDenominator ) 
      :  bNegative( false ), 
         uiN( uiNumerator ), 
         uiD( uiDenominator ) 
   { 
      NumberException< UnderlingCRI, true >::TestDivisionByZero( uiD ); 
 
      Normalize(); 
   } 
 
    
   // Constructor from signed and numerator, and denominator. 
   RationalTBase( const bool bNegative, 
                  const specialize< UnderlingCRI as sX::Numerator >& uiNumerator, 
                  const specialize< UnderlingCRI as sX::Denominator >& uiDenominator ) 
      :  bNegative( bNegative ), 
         uiN( uiNumerator ), 
         uiD( uiDenominator ) 
   { 
      NumberException< UnderlingCRI, true >::TestDivisionByZero( uiD ); 
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      Normalize(); 
   } 
 
 
   // Destructor. 
   ~RationalTBase() 
   { 
   } 
 
 
   // Standard operator equal. 
   RationalTBase< UnderlingCRI >& operator=( const RationalTBase< UnderlingCRI >& rational ) 
   { 
      bNegative = rational.bNegative; 
      uiN = rational.uiN; 
      uiD = rational.uiD; 
 
      return( *this ); 
   } 
 
 
   // Standard operator += 
   RationalTBase< UnderlingCRI > operator +=( const RationalTBase< UnderlingCRI >& rSummand ) 
   { 
      return( *this = *this + rSummand ); 
   } 
    
 
   // Standard operator -= 
   RationalTBase< UnderlingCRI > operator -=( const RationalTBase< UnderlingCRI >& rSubtrahend ) 
   { 
      return( *this = *this - rSubtrahend ); 
   } 
 
 
   // Standard operator *= 
   RationalTBase< UnderlingCRI > operator *=( const RationalTBase< UnderlingCRI >& rFactor ) 
   { 
      return( *this = *this * rFactor ); 
   } 
    
 
   // Standard operator /= 
   RationalTBase< UnderlingCRI > operator /=( const RationalTBase< UnderlingCRI >& rDivisor ) 
   { 
      return( *this = *this / rDivisor ); 
   } 
 
 
   // Returns an rational power of this integer. 
   inline RationalTBase< UnderlingCRI > ToPower( const Integer& uiPower ) const 
   { 
      RationalTBase< UnderlingCRI > rThis( 1 ); 
 
      for( Integer uiCount = 0; uiCount < uiPower; uiCount += 1 ) 
      { 
         rThis = rThis * *this; 
      } 
       
      return( rThis ); 
   } 
 
 
   // Unary plus (returns the operand itself). 
   RationalTBase< UnderlingCRI > operator+() const 
   { 
      return( *this ); 
   } 
 
 
   // Unary operator negation – inverts the signd. 
   RationalTBase< UnderlingCRI > operator-() const 
   { 
      return( IsZero() ? *this : RationalTBase< UnderlingCRI >( !bNegative, uiN, uiD ) ); 
   } 
 
 
   // Test if the number is zero. 
   bool IsZero() const 
   { 
      return( 0 == uiN ); 
   } 
 
 
   // Test if the number is positive. 
   bool IsPositive() const 
   { 
      return( !bNegative ); 
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   } 
 
 
   // Test if the number is negative. 
   bool IsNegative() const 
   { 
      return( bNegative ); 
   } 
 
 
   // Returns the numerator. 
   const UnderlingCRI& GetNumerator() const 
   { 
      return( uiN ); 
   } 
 
 
   // Returns the denominator. 
   const UnderlingCRI& GetDenominator() const 
   { 
      return( uiD ); 
   } 
 
 
   // This method returns the numerator as double precision floating point number. This method is  
   // intended for use when the Rational is specialized with the Integer class. If used with another  
   // specializer type, it must have method double GetAsDouble() const. Note that a number from the  
   // Integer class may be much larger than the larger number that a double precision floating point  
   // could represent. Also, note that floating point numbers are not evenly distributed having  
   // irregularly sized gaps between them. In difference the Integer numbers are evenly distributed.  
   // This means that Integer numbers could be in fact very rarely represented exactly using a  
   // floating point number. This function is useful for displaying Integer numbers. 
   double GetNumeratorAsDouble() const 
   { 
      return( uiN.GetAsDouble() ); 
   } 
 
 
   // This method returns the denominator as double precision floating point number. This method is  
   // intended for use when the Rational is specialized with the Integer class. If used with another  
   // specializer type, it must have method double GetAsDouble() const. Note that a number from the  
   // Integer class may be much larger than the larger number that a double precision floating point  
   // could represent. Also, note that floating point numbers are not evenly distributed having  
   // irregularly sized gaps between them. In difference the Integer numbers are evenly distributed.  
   // This means that Integer numbers could be in fact very rarely represented exactly using a  
   // floating point number. This function is useful for displaying Integer numbers. 
   double GetDenominatorAsDouble() const 
   { 
      return( uiD.GetAsDouble() ); 
   } 
 
 
   // The method returns the rational number as a double precision floating point number. This method  
   // is intended for use when the Rational is specialized with the Integer class. If used with another  
   // specializer type, it must have method double GetAsDouble() const. Note that a number from the  
   // Rational class may be much larger than the larger number that a double precision floating point  
   // could represent and is also PRECISE. Also, note that floating point numbers are not evenly  
   // distributed having irregularly sized gaps between them. In difference the Rational specialized 
   // with Integer are evenly distributed and PRECISE. This means that Rational specialized with Integer  
   // number could be in fact very rarely represented using a floating point number. This function is  
   // useful for displaying Rational numbers for informative purpoces. 
   double GetAsDouble() const 
   { 
      return( (bNegative ? -1 : 1) * GetNumeratorAsDouble() / GetDenominatorAsDouble() ); 
   } 
 
 
   // This method returns a signed pair +/-( numerator, denominator) representing the rational number exactly.  
   // This method is intended for use when the Rational is specialized with the Integer class. If used with  
   // another specializer type, it must have method string Print() const, where string must have LPCTSTR  
   // overloaded operator. Although this method returns the exact rational number, in some circumstances  
   // one may want to also consider using the float representations for informative purposes as their results  
   // may be easier to interpret. 
   MStringEx< TCHAR > Print() const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("%c(%s,%s)"), bNegative ? TCHAR('-') : TCHAR('+'), 
(LPCTSTR)uiN.Print(), (LPCTSTR)uiD.Print() ) ); 
   } 
 
 
   // This method returns the double representation of the rational number as a string in decimal notation.  
   // The parameter sets the required number of digits after the decimal point, max number is 16. Note that  
   // the floating point representation is most likely inaccurate to some degree depending on the represented  
   // number. Floating point numbers cannot represent proper rational numbers satisfactory. 
   MStringEx< TCHAR > PrintAsDoubleInDecimalNotation( const BYTE b1Precision ) const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("%+.") + MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("%d"), 
(0x0F & (b1Precision-1))+1 ) + TEXT("f"), GetAsDouble() ) ); 
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   } 
 
 
   // This method returns a HTML table containing the rational number in rational notation and floating point  
   // notation. This method is intended for use when the Rational is specialized with the Integer class. If  
   // used with another specializer type, it must have defined the methods used by this function. The parameter  
   // passed to the method is string which is inserted in the HTML table. Thus one can pass additional  
   // information to be printed together with the rational number, inside the returned HTML table. 
   MStringEx< TCHAR > PrintAsHtmlCell() const 
   { 
      // |-table 1---------------------------------------|-----------------------------------------------| 
      // | |-table 2-----------------------------------| |                                               | 
      // | |     sign  |  table 3 - rational notation  | |             double approximation              | 
      // | |-------------------------------------------| |                                               | 
      // |-----------------------------------------------|-----------------------------------------------| 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, 
                                  L"<table border='0' cellpadding='0' cellspacing='0' style='text-align: right;'>\ 
                                      <tr><td style='padding-right:10px; text-align: right; width: 500px;'>\ 
                                        <table border='0' cellpadding='0' cellspacing='0'>\ 
                                          <tr>\ 
                                            <td style='font-size:" Minus_Char_TextSize L"px;'>%c&nbsp</td>\ 
                                            <td><table border='0' cellpadding='0' cellspacing='0' style='text-align: right; font-
size:" Rational_Notation_TextSize L"px;'><tr><td style='border-bottom:solid black 
thin;'>%s</td></tr><tr><td>%s</td></tr></table></td>\ 
                                          </tr>\ 
                                        </table>\ 
                                        </td>\ 
                                        <td style='padding-left:20px; text-align: left; font-size:" Decimal_Notation_TextSize L"px; 
width: 200px;'>%s</td>\ 
                                      </tr></table>", bNegative ? TCHAR('-') : TCHAR('+'), (LPCTSTR)uiN.Print(), 
(LPCTSTR)uiD.Print(), (LPCTSTR)PrintAsDoubleInDecimalNotation( 16 ) ) ); 
   } 
 
 
private: 
   void Normalize() 
   { 
      if( 0 != uiN ) 
      { 
         UnderlingCRI uiDivident( MMAX< UnderlingCRI, UnderlingCRI >( uiN, uiD ) ); 
         UnderlingCRI uiDivisor(  MMIN< UnderlingCRI, UnderlingCRI >( uiN, uiD ) ); 
 
         UnderlingCRI uiQuotient( uiDivident.DivideBy_ReturnQuotient( uiDivisor ) ); 
 
         for( UnderlingCRI uiReminder( uiDivident - uiDivisor * uiQuotient ); 0 != uiReminder; uiReminder = uiDivident - uiDivisor * 
uiQuotient ) 
         { 
            uiDivident = uiDivisor; 
            uiDivisor  = uiReminder; 
            uiQuotient = uiDivident.DivideBy_ReturnQuotient( uiDivisor ); 
         } 
 
         if( 1 != uiDivisor ) 
         { 
            uiN /= uiDivisor; 
            uiD /= uiDivisor; 
         } 
      } 
      else 
      { 
         bNegative = false; 
         uiD = specialize< UnderlingCRI as sX::Denominator >::Initialize( 1 ); 
      } 
   } 
 
 
   // External operators - friend operators. 
 
 
   // Standard comparison operator equal to. 
   friend inline bool operator ==( const RationalTBase< UnderlingCRI >& rLeft, const RationalTBase< UnderlingCRI >& rRight ) 
   { 
      return( (rLeft.bNegative == rRight.bNegative) && (rLeft.uiN == rRight.uiN) && (rLeft.uiD == rRight.uiD) ); 
   } 
 
 
   // Standard comparison operator not equal to. 
   friend inline bool operator !=( const RationalTBase< UnderlingCRI >& rLeft, const RationalTBase< UnderlingCRI >& rRight ) 
   { 
      return( (rLeft.bNegative != rRight.bNegative) || (rLeft.uiN != rRight.uiN) || (rLeft.uiD != rRight.uiD) ); 
   } 
 
 
   // Standard comparison operator less than. 
   friend inline bool operator <( const RationalTBase< UnderlingCRI >& rLeft, const RationalTBase< UnderlingCRI >& rRight ) 
   { 
      if( rLeft.bNegative ^ rRight.bNegative ) 
      { 
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         // One is negative, the other positive. 
         return( rLeft.bNegative ); 
      } 
 
      return( rLeft.bNegative ? (rLeft.uiN * rRight.uiD) > (rRight.uiN * rLeft.uiD) : (rLeft.uiN * rRight.uiD) < (rRight.uiN * 
rLeft.uiD) ); 
   } 
 
 
   // Standard comparison operator greater than. 
   friend inline bool operator >( const RationalTBase< UnderlingCRI >& rLeft, const RationalTBase< UnderlingCRI >& rRight ) 
   { 
      if( rLeft.bNegative ^ rRight.bNegative ) 
      { 
         // One is negative, the other positive. 
         return( rRight.bNegative ); 
      } 
 
      return( rLeft.bNegative ? (rLeft.uiN * rRight.uiD) < (rRight.uiN * rLeft.uiD) : (rLeft.uiN * rRight.uiD) > (rRight.uiN * 
rLeft.uiD) ); 
   } 
 
 
   // Standard comparison operator less than or equal to. 
   friend inline bool operator <=( const RationalTBase< UnderlingCRI >& rLeft, const RationalTBase< UnderlingCRI >& rRight ) 
   { 
      if( rLeft.bNegative ^ rRight.bNegative ) 
      { 
         // One is negative, the other positive. 
         return( rLeft.bNegative ); 
      } 
 
      return( rLeft.bNegative ? (rLeft.uiN * rRight.uiD) >= (rRight.uiN * rLeft.uiD) : (rLeft.uiN * rRight.uiD) <= (rRight.uiN * 
rLeft.uiD) ); 
   } 
 
 
   // Standard comparison operator greater than or equal to. 
   friend inline bool operator >=( const RationalTBase< UnderlingCRI >& rLeft, const RationalTBase< UnderlingCRI >& rRight ) 
   { 
      if( rLeft.bNegative ^ rRight.bNegative ) 
      { 
         // One is negative, the other positive. 
         return( rRight.bNegative ); 
      } 
 
      return( rLeft.bNegative ? (rLeft.uiN * rRight.uiD) <= (rRight.uiN * rLeft.uiD) : (rLeft.uiN * rRight.uiD) >= (rRight.uiN * 
rLeft.uiD) ); 
   } 
 
 
   // Standard arithmetic operator plus. 
   friend inline RationalTBase< UnderlingCRI > operator +( const RationalTBase< UnderlingCRI >& iSummandL, const RationalTBase< 
UnderlingCRI >& iSummandR ) 
   { 
      const UnderlingCRI uiL( iSummandL.uiN * iSummandR.uiD ); 
      const UnderlingCRI uiR( iSummandR.uiN * iSummandL.uiD ); 
 
      Rational r; 
 
      if( iSummandL.bNegative ^ iSummandR.bNegative ) 
      { 
         // Both operands are have different signs. 
         r.uiN = specialize< UnderlingCRI as sX::Numerator >::Initialize( MMAX< UnderlingCRI, UnderlingCRI, UnderlingCRI >( uiL, uiR 
) - MMIN< UnderlingCRI, UnderlingCRI, UnderlingCRI >( uiL, uiR ) ); 
         r.bNegative = uiL > uiR ? iSummandL.bNegative : iSummandR.bNegative; 
      } 
      else 
      { 
         // Both operands are the same sign. 
         r.uiN = specialize< UnderlingCRI as sX::Numerator >::Initialize( uiL + uiR ); 
         r.bNegative = iSummandL.bNegative; 
      } 
 
      r.uiD = specialize< UnderlingCRI as sX::Denominator >::Initialize( iSummandL.uiD * iSummandR.uiD ); 
 
      r.Normalize(); 
 
      return( r ); 
   } 
 
 
   // Standard arithmetic operator minus. 
   friend inline RationalTBase< UnderlingCRI > operator -( const RationalTBase< UnderlingCRI >& rMinuend, const RationalTBase< 
UnderlingCRI >& rSubtrahend ) 
   { 
      return( rMinuend + (-rSubtrahend) ); 
   } 
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   // Standard arithmetic operator minus. 
   friend inline RationalTBase< UnderlingCRI > operator -( const Integer& iMinuend, const RationalTBase< UnderlingCRI >& rSubtrahend 
) 
   { 
      return( RationalTBase< UnderlingCRI >( specialize< UnderlingCRI as sX::Numerator >::Initialize( iMinuend ), specialize< 
UnderlingCRI as sX::Denominator >::Initialize( 1 ) ) + (-rSubtrahend) ); 
   } 
 
 
   // Standard arithmetic operator minus. 
   friend inline RationalTBase< UnderlingCRI > operator -( const RationalTBase< UnderlingCRI >& rMinuend, const Integer& iSubtrahend 
) 
   { 
      return( rMinuend + (-RationalTBase< UnderlingCRI >( specialize< UnderlingCRI as sX::Numerator >::Initialize( iSubtrahend ), 
specialize< UnderlingCRI as sX::Denominator >::Initialize( 1 ) )) ); 
   } 
 
 
   // Standard arithmetic operator multiplication. 
   friend inline RationalTBase< UnderlingCRI > operator *( const RationalTBase< UnderlingCRI >& rFactorL, const RationalTBase< 
UnderlingCRI >& rFactorR ) 
   { 
      return( Rational( rFactorL.bNegative ^ rFactorR.bNegative, specialize< UnderlingCRI as sX::Numerator >::Initialize( 
rFactorL.uiN * rFactorR.uiN ), specialize< UnderlingCRI as sX::Denominator >::Initialize( rFactorL.uiD * rFactorR.uiD ) ) ); 
   } 
 
 
   // Standard arithmetic operator multiplication. 
   friend inline RationalTBase< UnderlingCRI > operator *( const RationalTBase< UnderlingCRI >& rFactorL, const Integer& iFactorR ) 
   { 
      return( Rational( rFactorL.bNegative, specialize< UnderlingCRI as sX::Numerator >::Initialize( iFactorR * rFactorL.uiN ), 
specialize< UnderlingCRI as sX::Denominator >::Initialize( rFactorL.uiD ) ) ); 
   } 
 
 
   // Standard arithmetic operator multiplication. 
   friend inline RationalTBase< UnderlingCRI > operator *( const Integer& iFactorL, const RationalTBase< UnderlingCRI >& rFactorR ) 
   { 
      return( Rational( rFactorR.bNegative, specialize< UnderlingCRI as sX::Numerator >::Initialize( iFactorL * rFactorR.uiN ), 
specialize< UnderlingCRI as sX::Denominator >::Initialize( rFactorR.uiD ) ) ); 
   } 
 
 
   // Standard arithmetic operator multiplication. 
   friend inline RationalTBase< UnderlingCRI > operator *( const RationalTBase< UnderlingCRI >& rFactorL, const unsigned __int64& 
iFactorR ) 
   { 
      return( Rational( rFactorL.bNegative, specialize< UnderlingCRI as sX::Numerator >::Initialize( Integer( iFactorR ) * 
rFactorR.uiN ), specialize< UnderlingCRI as sX::Denominator >::Initialize( rFactorL.uiD ) ) ); 
   } 
 
 
   // Standard arithmetic operator multiplication. 
   friend inline RationalTBase< UnderlingCRI > operator *( const unsigned __int64& iFactorL, const RationalTBase< UnderlingCRI >& 
rFactorR ) 
   { 
      return( Rational( rFactorR.bNegative, specialize< UnderlingCRI as sX::Numerator >::Initialize( Integer( iFactorL ) * 
rFactorR.uiN ), specialize< UnderlingCRI as sX::Denominator >::Initialize( rFactorR.uiD ) ) ); 
   } 
 
 
   // Standard arithmetic operator division. This operator throws  
   // NumberException exception when dividing by zero. 
   friend inline RationalTBase< UnderlingCRI > operator /( const RationalTBase< UnderlingCRI >& rDividend, const RationalTBase< 
UnderlingCRI >& rDivisor ) 
   { 
      NumberException< RationalTBase< UnderlingCRI >, true >::TestDivisionByZero( rDivisor ); 
 
      return( Rational( rDividend.bNegative ^ rDivisor.bNegative, specialize< UnderlingCRI as sX::Numerator >::Initialize( 
rDividend.uiN * rDivisor.uiD ), specialize< UnderlingCRI as sX::Denominator >::Initialize( rDividend.uiD * rDivisor.uiN ) ) ); 
   } 
}; 
 
 
typedef RationalTBase< Integer > Rational; 
 
  



4.2.3. The Quadratic Irrational Template Class

The quadratic irrational template represents Real numbers in the form of quadratic irrational and similar to them.
The class consists from a Rational and a Functional. The functional is a template on its own specialized with
the specializer of the quadratic template. The quadratic specializer is propagated onto the functional and is not
otherwise used by the quadratic type. The functional expects to be specialized with a class derived from an abstract
class called Functor. The Functor represents a real function with a rational variable. The functor is de�ned as
abstract class as follows:

Functor(x) := f (x) , where x ∈ Q, f is a Real function.

The Functional is de�ned as:

Functional(Functor(x), y) := yFunctor(x), where y ∈ Q.

The Quadratic is de�ned as:

Quadratic(Functional(Functor(x), y), z) := z + Functional(Functor(x), y), where z ∈ Q.

Thus the de�nition of quadratic number is q = z + yf(x), where x, y, z ∈ Q and f is an unspecisied real function
with inverse. In particular f could be de�ned as f :=

√
x, f := 3

√
x, or any other real function with one variable.

Figure 11. Class diagram of the Functional and Quadratic template classes.
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Figure 12. Class diagram of the Functor abstract class and two derived from it functors.

Although the template class is called Quadratic it is clear that in fact the it is quadratic if oand only if the specializer
that is used to specialize the template is a square root functor. To de�ne an instance of quadratic one need to use
the following de�nition:

Ra t i o n a l a1 , a2 , a3 , b1 , b2 , b3 ;

// I n i t i a l i z e a1 , a2 , a3 , b1 , b2 , b3 ;

Quadrat i c< SquareRoot > q1 ( a1 , Func t i ona l < SquareRoot >( a2 , SquareRoot ( a3 ) ) ) ;
Quadrat i c< SquareRoot > q2 ( b1 , Func t i ona l < SquareRoot >( b2 , SquareRoot ( b3 ) ) ) ;
Quadrat i c< SquareRoot > q3 ( q1 + 208 * q2 ) ;

// De f i ne o the r cube−root , q u a d r a t i c form i r r a t i o n a l numver .
Quadrat i c< CubeRoot > c1 ( a1 , Func t i ona l < CubeRoot >( a2 , CubeRoot ( a3 ) ) ) ;
Quadrat i c< CubeRoot > c2 ( b1 , Func t i ona l < CubeRoot >( b2 , CubeRoot ( b3 ) ) ) ;
Quadrat i c< CubeRoot > c3 ( q1 + 208 * q2 ) ;

Problem 27. The Quadratic template de�nition appears consistent; however it is impossible to have default
constructor on the Quadratic since the variable under the functor cannot be prede�ned. Thus one or more of the
following four is true:

1. The declaration above meets the requirement and represents the required irrational numbers however it is
inconsistent in general, i.e. non bijective.

2. It is not possible to have more than one under-functor-variable per universe.

3. Default constructor is not necessary to exist.

4. There is a fundamental problem with quadratic numbers de�nition or numbers in general.

Clearly this problem is deep and serious and requires an investigation on its own. The Quadratic template as
de�ned above is su�ciently consistent for the Mean Median Map investigation and was successfully used in it with
this present form however the problem is extremely interesting and deserves the appropriate attention.

62



63 
 

Listing 8. The Quadratic and Functional templates, and the Functor, SquareRoot and CubeRoot classes. 
 
// 
// 
// Quadratic.h: Quadratic with arbitrary precision. 
// 
//                Proper Numbers Library 
// 
// © Copyright 2011 - 2011 by Miroslav Bonchev Bonchev. All rights reserved. 
// 
// 
//****************************************************************************************************** 
 
 
// Open Source License – The MIT License 
// 
// 
// {your product} uses the: Proper Numbers Library – Copyright © 2011 by Miroslav Bonchev Bonchev. All Rights Reserved. 
// {your product} uses the: Object Specialization Model – Copyright © 2009 - 2011 by Miroslav Bonchev Bonchev. All Rights Reserved. 
// 
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and 
// associated  documentation files  (the "Software"),  to deal  in the Software without restriction, 
// including  without  limitation the rights  to use,  copy,  modify,  merge,  publish,  distribute, 
// sublicense,  and/or sell copies of the Software,  and to permit persons to  whom the  Software is 
// furnished to do so, subject to the following conditions: 
// 
// The  above  copyright  notice  and  this  permission  notice  shall be  included in all copies or 
// substantial portions of the Software. 
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT 
// NOT  LIMITED  TO  THE  WARRANTIES  OF  MERCHANTABILITY,  FITNESS  FOR  A  PARTICULAR  PURPOSE AND  
// NONINFRINGEMENT.  IN NO EVENT SHALL  THE  AUTHORS  OR  COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, 
// DAMAGES OR OTHER LIABILITY,  WHETHER IN AN ACTION OF CONTRACT,  TORT OR OTHERWISE,  ARISING FROM, 
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. 
 
 
//__________________________________________________________________________________________________ 
// This software is OSI Certified Open Source Software. 
// OSI Certified is a certification mark of the Open Source Initiative. 
 
 
#pragma once 
 
 
#include "stdafx.h" 
#include "Common.h" 
#include "StringEx.h" 
#include "Specialize.h" 
#include "Rational.h" 
 
 
#define Minus_Char_TextSize         L"22" 
#define Rational_Notation_TextSize  L"12" 
#define Decimal_Notation_TextSize   L"12" 
 
 
// Functor is a function that remains as it is e.g. SRQT( 5 ) 
class Functor 
{ 
protected: 
   Rational rElement; 
 
public: 
   Functor( const Rational& rElement ) : rElement( rElement ) 
   { 
   } 
 
   Functor( const Functor& function ) : rElement( function.rElement ) 
   { 
   } 
 
   virtual ~Functor() 
   { 
   } 
 
   Functor& operator=( const Functor& function ) 
   { 
      rElement = function.rElement; 
 
      return( *this ); 
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   } 
 
   virtual bool IsZero() const 
   { 
      return( rElement.IsZero() ); 
   } 
 
 
   virtual MStringEx< TCHAR > Print() const = 0; 
   virtual MStringEx< TCHAR > PrintAsDoubleInDecimalNotation( const BYTE b1Precision ) const = 0; 
 
 
   virtual Rational ApplyInverse() const 
   { 
      return( rElement ); 
   } 
 
   
   virtual Rational ApplyInverseOnValue( const Rational& rNumber ) const = 0; 
   virtual Rational ApplyInverseOnProduct( const Rational& rNumber ) const = 0; 
   virtual double   GetAsDouble() const = 0; 
 
 
   virtual bool IsPositive() const = 0; 
 
   bool IsCompatible( const Functor& functor ) const 
   { 
      return( rElement == functor.rElement ); 
   } 
 
 
   friend inline bool operator ==( const Functor& rLeft, const Functor& rRight ) 
   { 
      return( rLeft.rElement == rRight.rElement ); 
   } 
 
 
   friend inline bool operator !=( const Functor& rLeft, const Functor& rRight ) 
   { 
      return( ! operator ==( rLeft, rRight ) ); 
   } 
}; 
 
 
class SquareRoot : public Functor 
{ 
public: 
   SquareRoot( const Rational& rational ) : Functor( rational ) 
   { 
   } 
 
 
   SquareRoot( const SquareRoot& squareRoot ) : Functor( squareRoot ) 
   { 
   } 
 
 
   virtual ~SquareRoot() 
   { 
   } 
 
 
   SquareRoot& operator=( const SquareRoot& squareRoot ) 
   { 
      __super::operator=( squareRoot ); 
 
      return( *this ); 
   } 
 
 
   virtual MStringEx< TCHAR > Print() const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("sqrt( %s )"), (LPCTSTR)rElement.Print() ) ); 
   } 
 
 
   virtual MStringEx< TCHAR > PrintAsDoubleInDecimalNotation( const BYTE b1Precision ) const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("sqrt( %s )"), (LPCTSTR)rElement.PrintAsDoubleInDecimalNotation( 
b1Precision ) ) ); 
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   } 
 
 
   virtual bool IsPositive() const 
   { 
      return( true ); 
   } 
 
 
   const Rational& SquarePower() const 
   { 
      return( rElement ); 
   } 
 
 
   virtual Rational ApplyInverseOnValue( const Rational& rNumber ) const 
   { 
      return( rNumber.ToPower( 2 ) ); 
   } 
 
 
   virtual Rational ApplyInverseOnProduct( const Rational& rNumber ) const 
   { 
      return( rNumber.ToPower( 2 ) * ApplyInverse() ); 
   } 
 
 
   virtual double GetAsDouble() const 
   { 
      return( sqrt( rElement.GetAsDouble() ) ); 
   } 
}; 
 
 
class CubeRoot : public Functor 
{ 
public: 
   CubeRoot( const Rational& rational ) : Functor( rational ) 
   { 
   } 
 
 
   CubeRoot( const CubeRoot& cubeRoot ) : Functor( cubeRoot ) 
   { 
   } 
 
 
   virtual ~CubeRoot() 
   { 
   } 
 
 
   CubeRoot& operator=( const CubeRoot& squareRoot ) 
   { 
      __super::operator=( squareRoot ); 
 
      return( *this ); 
   } 
 
 
   virtual MStringEx< TCHAR > Print() const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("cbrt( %s )"), (LPCTSTR)rElement.Print() ) ); 
   } 
 
 
   virtual MStringEx< TCHAR > PrintAsDoubleInDecimalNotation( const BYTE b1Precision ) const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("cbrt( %s )"), (LPCTSTR)rElement.PrintAsDoubleInDecimalNotation( 
b1Precision ) ) ); 
   } 
 
 
   virtual bool IsPositive() const 
   { 
      return( true ); 
   } 
 
 
   virtual Rational ApplyInverseOnValue( const Rational& rNumber ) const 
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   { 
      return( rNumber.ToPower( 3 ) ); 
   } 
 
 
   virtual Rational ApplyInverseOnProduct( const Rational& rNumber ) const 
   { 
      return( rNumber.ToPower( 3 ) * ApplyInverse() ); 
   } 
 
 
   virtual double GetAsDouble() const 
   { 
      return( pow( rElement.GetAsDouble(), (double)1 / (double)3 ) ); 
   } 
}; 
 
 
// r1*functor(r2) 
template< class tFunctor > 
class Functional 
{ 
private: 
   Rational rCoeff; 
   tFunctor fFunct; 
 
 
public: 
   // Copy constructor. 
   Functional( const Functional& functional ) : rCoeff( functional.rCoeff ), fFunct( functional.fFunct ) 
   { 
   } 
 
 
   // Constructor from unsigned numerator and denominator. 
   Functional( const Rational& rCoeff, const tFunctor& fFunct ) : rCoeff( rCoeff ), fFunct( fFunct ) 
   { 
   } 
 
 
   // Destructor. 
   ~Functional() 
   { 
   } 
 
 
   // Standard operator equal. 
   Functional& operator=( const Functional& functional ) 
   { 
      rCoeff = functional.rCoeff; 
      fFunct = functional.fFunct; 
 
      return( *this ); 
   } 
 
 
   // Returns a double approximation of the functional value. 
   double GetAsDouble() const 
   { 
      return( rCoeff.GetAsDouble() * fFunct.GetAsDouble() ); 
   } 
 
 
   Rational ApplyInverse() const 
   { 
      return( fFunct.ApplyInverseOnProduct( rCoeff ) ); 
   } 
 
 
   // Standard operator += 
   Functional< tFunctor > operator +=( const Functional< tFunctor >& fSummand ) 
   { 
      return( *this = *this + fSummand ); 
   } 
    
 
   // Standard operator -= 
   Functional< tFunctor > operator -=( const Functional< tFunctor >& fSubtrahend ) 
   { 
      return( *this = *this - fSubtrahend ); 
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   } 
 
 
   // Standard operator *= 
   Functional< tFunctor > operator *=( const Functional< tFunctor >& rFactor ) 
   { 
      return( *this = *this * rFactor ); 
   } 
    
 
   // Standard operator /= 
   Functional< tFunctor > operator /=( const Functional< tFunctor >& rDivisor ) 
   { 
      return( *this = *this / rDivisor ); 
   } 
 
 
   // Unary plus (returns the operand itself). 
   Functional< tFunctor > operator+() const 
   { 
      return( *this ); 
   } 
 
 
   // Unary operator negation – inverts the signd. 
   Functional< tFunctor > operator-() const 
   { 
      return( Functional< tFunctor >( rCoeff, fFunct ) ); 
   } 
 
 
   // Returns the coefficient. 
   const Rational& GetCoefficient() const 
   { 
      return( rCoeff ); 
   } 
 
 
   // Returns the functor. 
   const tFunctor& GetFunctor() const 
   { 
      return( fFunct ); 
   } 
 
 
   // Test if the number is zero. 
   bool IsZero() const 
   { 
      return( rCoeff.IsZero() || fFunct.IsZero() ); 
   } 
 
 
   // Print the Functional exactly. 
   MStringEx< TCHAR > Print() const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("%s.%s"), (LPCTSTR)rCoeff.Print(), (LPCTSTR)fFunct.Print() ) ); 
   } 
 
 
   // This prints the Functional using double representation of the contained numbers.  
   // The parameter sets the required number of digits after the decimal point, max number is 16. Note that  
   // the floating point representation is most likely inaccurate to some degree depending on the represented  
   // number. Floating point numbers cannot represent proper rational numbers satisfactory. 
   MStringEx< TCHAR > PrintAsDoubleInDecimalNotation( const BYTE b1Precision ) const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("%s.%s"), (LPCTSTR)rCoeff.PrintAsDoubleInDecimalNotation( b1Precision ), 
(LPCTSTR)fFunct.PrintAsDoubleInDecimalNotation( b1Precision ) ) ); 
   } 
 
 
   // External operators - friend operators. 
 
 
   // Standard comparison operator equal to. 
   friend inline bool operator ==( const Functional< tFunctor >& fLeft, const Functional< tFunctor >& fRight ) 
   { 
      NumberException< tFunctional, true >::TestCompatibility( fLeft.fFunct, fRight.fFunct ); 
 
      return( fLeft.rCoeff == fRight.rCoeff ); 
   } 
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   // Standard comparison operator not equal to. 
   friend inline bool operator !=( const Functional< tFunctor >& rLeft, const Functional< tFunctor >& rRight ) 
   { 
      NumberException< tFunctional, true >::TestCompatibility( fLeft.fFunct, fRight.fFunct ); 
 
      return( fLeft.rCoeff != fRight.rCoeff ); 
   } 
 
 
   // Standard comparison operator less than. 
   friend inline bool operator <( const Functional< tFunctor >& rLeft, const Functional< tFunctor >& rRight ) 
   { 
      NumberException< tFunctional, true >::TestCompatibility( fLeft.fFunct, fRight.fFunct ); 
 
      return( fLeft.rCoeff < fRight.rCoeff ); 
   } 
 
 
   // Standard comparison operator greater than. 
   friend inline bool operator >( const Functional< tFunctor >& rLeft, const Functional< tFunctor >& rRight ) 
   { 
      NumberException< tFunctional, true >::TestCompatibility( fLeft.fFunct, fRight.fFunct ); 
 
      return( fLeft.rCoeff > fRight.rCoeff ); 
   } 
 
 
   // Standard comparison operator less than or equal to. 
   friend inline bool operator <=( const Functional< tFunctor >& rLeft, const Functional< tFunctor >& rRight ) 
   { 
      NumberException< tFunctional, true >::TestCompatibility( fLeft.fFunct, fRight.fFunct ); 
 
      return( fLeft.rCoeff <= fRight.rCoeff ); 
   } 
 
 
   // Standard comparison operator greater than or equal to. 
   friend inline bool operator >=( const Functional< tFunctor >& rLeft, const Functional< tFunctor >& rRight ) 
   { 
      NumberException< tFunctional, true >::TestCompatibility( fLeft.fFunct, fRight.fFunct ); 
 
      return( fLeft.rCoeff >= fRight.rCoeff ); 
   } 
 
 
   // Standard arithmetic operator plus. 
   friend inline Functional< tFunctor > operator +( const Functional< tFunctor >& fSummandL, const Functional< tFunctor >& fSummandR ) 
   { 
      NumberException< tFunctor, true >::TestCompatibility( fSummandL.fFunct, fSummandR.fFunct ); 
 
      // r1*f(r) + r2*f(r) = (r1 + r2)*f(r) 
      return( Functional< tFunctor >( fSummandL.rCoeff + fSummandR.rCoeff, fSummandL.fFunct ) ); 
   } 
 
 
   // Standard arithmetic operator minus. 
   friend inline Functional< tFunctor > operator -( const Functional< tFunctor >& fMinuend, const Functional< tFunctor >& fSubtrahend ) 
   { 
      NumberException< tFunctor, true >::TestCompatibility( fMinuend.fFunct, fSubtrahend.fFunct ); 
 
      // r1*f(r) - r2*f(r) = (r1 + r2)*f(r) 
      return( Functional< tFunctor >( fMinuend.rCoeff - fSubtrahend.rCoeff, fMinuend.fFunct ) ); 
   } 
 
 
   // Arithmetic operator multiplication - Rational = Functional * Functional 
   // Big problems here. This operator must return a Functional IN GENERAL. The Coefficient part has no problems, 
   // But the functor part presents a large proplem, it needs to change so I need to return VARIANT type... 
   friend inline Rational operator *( const Functional< tFunctor >& fFactorL, const Functional< tFunctor >& fFactorR ) 
   { 
      NumberException< tFunctor, true >::TestCompatibility( fFactorL.fFunct, fFactorR.fFunct ); 
 
      return( fFactorL.rCoeff * fFactorR.rCoeff * fFactorL.fFunct.SquarePower() ); 
   } 
 
 
   // Standard arithmetic operator multiplication. 
   friend inline Functional< tFunctor > operator *( const Rational& rLeft, const Functional< tFunctor >& fFactorR ) 
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   { 
      return( Functional< tFunctor >( rLeft * fFactorR.rCoeff, fFactorR.fFunct ) ); 
   } 
 
 
   // Standard arithmetic operator multiplication. 
   friend inline Functional< tFunctor > operator *( const Functional< tFunctor >& fFactorL, const Rational& rRight ) 
   { 
      return( Functional< tFunctor >( rRight * fFactorL.rCoeff, fFactorL.fFunct ) ); 
   } 
 
 
   // Standard arithmetic operator division. This operator throws  
   // NumberException exception when dividing by zero. 
   friend inline Functional< tFunctor > operator /( const Functional< tFunctor >& rDividend, const Functional< tFunctor >& rDivisor ) 
   { 
      NumberException< Functional< tFunctor >, true >::TestDivisionByZero( rDivisor ); 
      NumberException< tFunctor, true >::TestCompatibility( rDividend.fFunct, rDivisor.fFunct ); 
 
      return( Functional< tFunctor >( rDividend.rCoeff / rDivisor.rCoeff, rDividend.fFunct / rDivisor.fFunct ) ); 
   } 
}; 
 
 
template< class tFunctional > 
class Quadratic //TBase 
{ 
private: 
   Rational    rNumer; 
   Functional< tFunctional > fFunctional; 
 
 
public: 
   // Copy constructor. 
   Quadratic( const Quadratic< tFunctional >& quadratic ) 
      :  rNumer( quadratic.rNumer ), 
         fFunctional( quadratic.fFunctional ) 
   { 
   } 
 
 
   // Constructor from signed integer. 
   Quadratic( const __int64 nInteger ) 
      :  rNumer( nInteger ), 
         fFunctional( 0, tFunctional( 5 ) ) 
   { 
   } 
 
 
   // Constructor from integer. 
   Quadratic( const Integer& iNumer ) 
      :  rNumer( specialize< Integer as sX::Numerator >::Initialize( rNumer ), 
         fFunctional( 0, tFunctional( 5 ) ) ) 
   { 
   } 
 
 
   // Constructor from Rational. 
   Quadratic( const Rational& rNumer ) 
      :  rNumer( rNumer ), 
         fFunctional( 0, tFunctional( 5 ) ) 
   { 
   } 
 
 
   // Constructor from Rational and functional. 
   Quadratic( const Rational& rNumer, const Functional< tFunctional >& fFunctional ) 
      :  rNumer( rNumer ), 
         fFunctional( fFunctional ) 
   { 
   } 
 
    
   // Destructor. 
   ~Quadratic() 
   { 
   } 
 
 
   // Standard operator equal. 
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   Quadratic< tFunctional >& operator=( const Quadratic< tFunctional >& quadratic ) 
   { 
      rNumer = quadratic.rNumer; 
      fFunctional = quadratic.fFunctional ; 
 
      return( *this ); 
   } 
 
 
   // Standard operator += 
   Quadratic< tFunctional > operator +=( const Quadratic< tFunctional >& rSummand ) 
   { 
      return( *this = *this + rSummand ); 
   } 
    
 
   // Standard operator -= 
   Quadratic< tFunctional > operator -=( const Quadratic< tFunctional >& rSubtrahend ) 
   { 
      return( *this = *this - rSubtrahend ); 
   } 
 
 
   // Standard operator *= 
   Quadratic< tFunctional > operator *=( const Quadratic< tFunctional >& rFactor ) 
   { 
      return( *this = *this * rFactor ); 
   } 
    
 
   // Standard operator /= 
   Quadratic< tFunctional > operator /=( const Quadratic< tFunctional >& rDivisor ) 
   { 
      return( *this = *this / rDivisor ); 
   } 
 
 
   // Unary plus (returns the operand itself). 
   Quadratic< tFunctional > operator+() const 
   { 
      return( *this ); 
   } 
 
 
   // Unary operator negation – inverts the sign. 
   Quadratic< tFunctional > operator-() const 
   { 
      return( Quadratic< tFunctional >( -rNumer, -fFunctional ) ); 
   } 
 
 
   // Test if the number is zero. 
   bool IsZero() const 
   { 
      return( rNumer.IsZero() && fFunctional.IsZero() ); 
   } 
 
 
   // This method prints a string exact representations of the quadratic number.  
   // This method is intended for use when the Rational is specialized with the Integer class. If used with  
   // another specializer type, it must have method string Print() const, where string must have LPCTSTR  
   // overloaded operator. Although this method returns the exact rational number, in some circumstances  
   // one may want to also consider using the float representations for informative purposes as their results  
   // may be easier to interpret. 
   MStringEx< TCHAR > Print() const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("%s %s"), (LPCTSTR)rNumer.Print(), (LPCTSTR)fFunctional.Print() ) ); 
   } 
 
 
   // This method returns the double representation of the rational number and functional as a string in decimal notation.  
   // The parameter sets the required number of digits after the decimal point, max number is 16. Note that  
   // the floating point representation is most likely inaccurate to some degree depending on the represented  
   // number. Floating point numbers cannot represent proper rational numbers satisfactory. 
   MStringEx< TCHAR > PrintAsDoublePartsInDecimalNotation( const BYTE b1Precision ) const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("%s %s"), (LPCTSTR)rNumer.PrintAsDoubleInDecimalNotation( b1Precision ), 
(LPCTSTR)fFunctional.PrintAsDoubleInDecimalNotation( b1Precision ) ) ); 
   } 
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   // This method returns the double approximation of the number. 
   // The parameter sets the required number of digits after the decimal point, max number is 16. Note that  
   // the floating point representation is most likely inaccurate to some degree depending on the represented  
   // number. Floating point numbers cannot represent proper rational numbers satisfactory. 
   MStringEx< TCHAR > PrintAsDoubleInDecimalNotation( const BYTE b1Precision ) const 
   { 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, MStringEx< TCHAR >( MStringEx< TCHAR >::FF, TEXT("%%.%df"), b1Precision ), 
rNumer.GetAsDouble() + fFunctional.GetAsDouble() ) ); 
   } 
 
 
   // This method returns a HTML table containing the Quadratic number in floating point notation. This  
   // method is intended for use when the Rational is specialized with the Integer class. If used with  
   // another specializer type, it must have method double GetAsDouble() const. Note that a number from  
   // the Rational class may be much larger than the larger number that a double precision floating point  
   // could represent and is also PRECISE. Also, note that floating point numbers are not evenly  
   // distributed having irregularly sized gaps between them. In difference the Rational specialized 
   // with Integer are evenly distributed and PRECISE. This means that Rational specialized with Integer  
   // number could be in fact very rarely represented using a floating point number. This function is  
   // useful for displaying Rational numbers for informative purposes. 
   MStringEx< TCHAR > PrintAsHtmlCell() const 
   { 
      // |- table -------------------|-----------------------| 
      // |                quadratic  |  double approximation | 
      // |---------------------------|-----------------------| 
      return( MStringEx< TCHAR >( MStringEx< TCHAR >::FF, 
                                  L"<table border='0' cellpadding='0' cellspacing='0' style='text-align: right;'>\ 
                                      <tr>\ 
                                        <td style='font-size: 12px; width:500px; text-align: right; font-size:" Decimal_Notation_TextSize 
L"px; width: 300px;'>%s</td>\ 
                                        <td style='padding-left:20px; text-align: left; font-size:" Decimal_Notation_TextSize L"px; width: 
200px;'>%s</td>\ 
                                      </tr>\ 
                                    </table>", (LPCTSTR)Print(), (LPCTSTR)PrintAsDoubleInDecimalNotation( 16 ) ) ); 
   } 
 
 
   // External operators - friend operators. 
 
 
   // Standard comparison operator equal to. 
   friend inline bool operator ==( const Quadratic< tFunctional >& rLeft, const Quadratic< tFunctional >& rRight ) 
   { 
      NumberException< tFunctional, true >::TestCompatibility( rLeft.fFunctional.GetFunctor(), rRight.fFunctional.GetFunctor() ); 
 
      // | a1     c1  |   | a2     c2  |    | a1     a2 |   | c2     c1 | 
      // |---- + ----m| ? |---- + ----m| => |---- - ----| ? |---- - ----|m => (x1 -x2) ? (y2-y1)m 
      // | b1     d1  |   | b2     d2  |    | b1     b2 |   | d2     d1 | 
 
      return( rLeft.fFunctional.GetFunctor().ApplyInverseOnValue( rLeft.rNumer - rRight.rNumer ) == Functional< tFunctional >( 
rRight.fFunctional.GetCoefficient() - rLeft.fFunctional.GetCoefficient(), rLeft.fFunctional.GetFunctor() ).ApplyInverse() ); 
   } 
 
 
   // Standard comparison operator not equal to. 
   friend inline bool operator !=( const Quadratic< tFunctional >& rLeft, const Quadratic< tFunctional >& rRight ) 
   { 
      return( !operator==( rLeft, rRight ) ); 
   } 
 
 
   // Standard comparison operator less than. 
   friend inline bool operator <( const Quadratic< tFunctional >& rLeft, const Quadratic< tFunctional >& rRight ) 
   { 
      NumberException< tFunctional, true >::TestCompatibility( rLeft.fFunctional.GetFunctor(), rRight.fFunctional.GetFunctor() ); 
 
      // | a1     c1  |   | a2     c2  |    | a1     a2 |   | c2     c1 | 
      // |---- + ----m| < |---- + ----m| -> |---- - ----| < |---- - ----|m -> (x1 -x2) < (y2-y1)m -> X < Ym 
      // | b1     d1  |   | b2     d2  |    | b1     b2 |   | d2     d1 | 
 
      const Rational rX( rLeft.rNumer - rRight.rNumer ); 
      const Rational rY( rRight.fFunctional.GetCoefficient() - rLeft.fFunctional.GetCoefficient() ); 
 
      const bool bX_positive( 0 < rX ); 
      const bool bYm_positive( (0 < rY) && rRight.fFunctional.GetFunctor().IsPositive() ); 
 
      if( bX_positive != bYm_positive ) 
      { 
         // One side is positive, the other negative. rYm > 0 => rYm > rX. 
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         return( bYm_positive ); 
      } 
       
      // Both sides are of the same sign. 
      if( bX_positive || (rLeft.fFunctional.GetFunctor().ApplyInverseOnValue( -1 ) < 0) ) 
      { 
         // Both sides are positive 
         // OR the inverse of the functor does not change the sign - consider m is CubeRoot. 
         // Compare the inverses as it is. 
         return( rLeft.fFunctional.GetFunctor().ApplyInverseOnValue( rX ) < Functional< tFunctional >( rY, rLeft.fFunctional.GetFunctor() 
).ApplyInverse() ); 
      } 
 
      // Both sides are negative, and the inverse changes the sign - consider m is SquareRoot. 
      return( rLeft.fFunctional.GetFunctor().ApplyInverseOnValue( rX ) > Functional< tFunctional >( rY, rLeft.fFunctional.GetFunctor() 
).ApplyInverse() ); 
   } 
 
 
   // Standard comparison operator greater than. 
   friend inline bool operator >( const Quadratic< tFunctional >& rLeft, const Quadratic< tFunctional >& rRight ) 
   { 
      NumberException< tFunctional, true >::TestCompatibility( rLeft.fFunctional.GetFunctor(), rRight.fFunctional.GetFunctor() ); 
 
      // | a1     c1  |   | a2     c2  |    | a1     a2 |   | c2     c1 | 
      // |---- + ----m| > |---- + ----m| -> |---- - ----| > |---- - ----|m -> (x1 -x2) > (y2-y1)m -> X > Ym 
      // | b1     d1  |   | b2     d2  |    | b1     b2 |   | d2     d1 | 
 
      const Rational rX( rLeft.rNumer - rRight.rNumer ); 
      const Rational rY( rRight.fFunctional.GetCoefficient() - rLeft.fFunctional.GetCoefficient() ); 
 
      const bool bX_positive( 0 < rX ); 
      const bool bYm_positive( (0 < rY) && rRight.fFunctional.GetFunctor().IsPositive() ); 
 
      if( bX_positive != bYm_positive ) 
      { 
         // One side is positive, the other negative. rX > 0 => rX > rYm. 
         return( bX_positive ); 
      } 
       
      // Both sides are of the same sign. 
      if( bX_positive || (rLeft.fFunctional.GetFunctor().ApplyInverseOnValue( -1 ) < 0) ) 
      { 
         // Both sides are positive 
         // OR the inverse of the functor does not change the sign - consider m is CubeRoot. 
         // Compare the inverses as it is. 
         return( rLeft.fFunctional.GetFunctor().ApplyInverseOnValue( rX ) > Functional< tFunctional >( rY, rLeft.fFunctional.GetFunctor() 
).ApplyInverse() ); 
      } 
 
      // Both sides are negative, and the inverse changes the sign - consider m is SquareRoot. 
      return( rLeft.fFunctional.GetFunctor().ApplyInverseOnValue( rX ) < Functional< tFunctional >( rY, rLeft.fFunctional.GetFunctor() 
).ApplyInverse() ); 
   } 
 
 
   // Standard comparison operator less than or equal to. 
   friend inline bool operator <=( const Quadratic< tFunctional >& rLeft, const Quadratic< tFunctional >& rRight ) 
   { 
      return( operator< ( rLeft, rRight ) || operator==( rLeft, rRight ) ); 
   } 
 
 
   // Standard comparison operator greater than or equal to. 
   friend inline bool operator >=( const Quadratic< tFunctional >& rLeft, const Quadratic< tFunctional >& rRight ) 
   { 
      return( operator> ( rLeft, rRight ) || operator==( rLeft, rRight ) ); 
   } 
 
 
   // Standard arithmetic operator plus. 
   friend inline Quadratic< tFunctional > operator +( const Quadratic< tFunctional >& iSummandL, const Quadratic< tFunctional >& iSummandR 
) 
   { 
      return( Quadratic< tFunctional >( iSummandL.rNumer + iSummandR.rNumer, iSummandL.fFunctional + iSummandR.fFunctional ) ); 
   } 
 
 
   // Standard arithmetic operator minus. 
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   friend inline Quadratic< tFunctional > operator -( const Quadratic< tFunctional >& qMinuend, const Quadratic< tFunctional >& 
qSubtrahend ) 
   { 
      return( Quadratic< tFunctional >( qMinuend.rNumer - qSubtrahend.rNumer, qMinuend.fFunctional - qSubtrahend.fFunctional ) ); 
   } 
 
 
   // Standard arithmetic operator multiplication. 
   friend inline Quadratic< tFunctional > operator *( const Quadratic< tFunctional >& qFactorL, const Quadratic< tFunctional >& qFactorR ) 
   { 
      return( Quadratic< tFunctional >( qFactorL.rNumer * qFactorR.rNumer + qFactorL.fFunctional * qFactorR.fFunctional, qFactorL.rNumer * 
qFactorR.fFunctional + qFactorL.fFunctional * qFactorR.rNumer ) ); 
   } 
 
 
   // Standard arithmetic operator division. This operator throws  
   // NumberException exception when dividing by zero. 
   friend inline Quadratic< tFunctional > operator /( const Quadratic< tFunctional >& qDividend, const Quadratic< tFunctional >& qDivisor 
) 
   { 
      NumberException< Quadratic< tFunctional >, true >::TestDivisionByZero( qDivisor ); 
      NumberException< tFunctional, true >::TestCompatibility( qDividend.fFunctional.GetFunctor(), qDivisor.fFunctional.GetFunctor() ); 
 
      // | a1     c1  |   | a2     c2 |        b2.d2                  mD^2 
      // |---- + ----m| / |---- + ----| = A = ------- . --------------------------------- .[ B = (a1.a2.d1.d2 - b1.b2.c1.c2.m^2) + C = 
(a2.b1.c1.d2 - a1.b2.c2.d1).m] 
      // | b1     d1  |   | b2     d2 |        b1.d1     (a2.d2)^2.mD^2 - (b2.c2)^2.mN^2 
 
      const Rational a1( qDividend.rNumer.IsNegative(), specialize< Integer as sX::Numerator >::Initialize( 
qDividend.rNumer.GetNumerator() ) ); 
      const Rational b1( specialize< Integer as sX::Numerator >::Initialize( qDividend.rNumer.GetDenominator() ) ); 
 
      const Rational c1( qDividend.fFunctional.GetCoefficient().IsNegative(), specialize< Integer as sX::Numerator >::Initialize( 
qDividend.fFunctional.GetCoefficient().GetNumerator() ) ); 
      const Rational d1( specialize< Integer as sX::Numerator >::Initialize( qDividend.fFunctional.GetCoefficient().GetDenominator() ) ); 
 
 
      const Rational a2( qDivisor.rNumer.IsNegative(), specialize< Integer as sX::Numerator >::Initialize( qDivisor.rNumer.GetNumerator() 
) ); 
      const Rational b2( specialize< Integer as sX::Numerator >::Initialize( qDivisor.rNumer.GetDenominator() ) ); 
 
      const Rational c2( qDivisor.fFunctional.GetCoefficient().IsNegative(), specialize< Integer as sX::Numerator >::Initialize( 
qDivisor.fFunctional.GetCoefficient().GetNumerator() ) ); 
      const Rational d2( specialize< Integer as sX::Numerator >::Initialize( qDivisor.fFunctional.GetCoefficient().GetDenominator() ) ); 
 
      const Rational mSquare( qDividend.fFunctional.GetFunctor().SquarePower() ); 
 
      // Compute the singless parts. 
      const Rational A( specialize< Integer as sX::Numerator >::Initialize( b2.GetNumerator() * d2.GetNumerator() * 
mSquare.GetDenominator() ), 
                        specialize< Integer as sX::Denominator >::Initialize( b1.GetNumerator() * d1.GetNumerator() *  
                                                                             (a2.GetNumerator() * 
                                                                              a2.GetNumerator() * 
                                                                              d2.GetNumerator() * 
                                                                              d2.GetNumerator() * 
                                                                              mSquare.GetDenominator() - 
                                                                              c2.GetNumerator() * 
                                                                              c2.GetNumerator() * 
                                                                              b2.GetNumerator() * 
                                                                              b2.GetNumerator() * 
                                                                              mSquare.GetNumerator()) ) ); 
 
      const Rational B( a1 * a2 * d1 * d2 - b1 * b2 * c1 * c2 * mSquare ); 
      const Rational C( a2 * b1 * c1 * d2 - a1 * b2 * c2 * d1 ); 
 
      return( Quadratic< tFunctional >( A * B, Functional< tFunctional >( A * C, qDividend.fFunctional.GetFunctor() ) ) ); 
   } 
 
 
   const Rational& GetNumer() const 
   { 
      return( rNumer ); 
   } 
 
 
   const Functional< tFunctional >& GetFunctional() const 
   { 
      return( fFunctional ); 
   } 
}; 



4.3. The Mean Meadin Map Application

The Mean Median Map application is a multithreaded console application able to run from 1 to 24 threads simulta-
neously. Since the Mean Median Map is very computational extensive it was designed to allow utilizing the entire
machine processing power. The typical processor in a modern computer is multicore running at least one logical
thread per core. Since the Mean Median Map is a recursive function it is not possible to be itself parallelized,
however often one desires to compute the Mean Median Map for more than one starting set, e.g. on interval, by
sequence (the starting sets are determined by some other well-known sequence, e.g. Fibonacci numbers), or other-
wise. In these cases the application is able to launch and maintain threads up to the requested amount utilizing the
processor resources. Suppose that one requires to compute large number of sequences on a system equipped with
an i7-980x processor, which has 6 cores and 12 logical threads. Launching the application with request for use of
12 (work) threads will utilize all processor resources. Launching the application with 13 or more threads will cause
performance degrade due threads switching. Launching 11 or fewer threads would be leaving resources unused. The
work threads run at low priority level, thus even when they require 100% of the processor resources the operating
system will schedule the user interface and other normal priority threads with precedence over them, so that the
system is also usable for other tasks. Other systems and processors might have 1, 2, 4, 8 or other numbers of cores
with one or more logical threads each. The maximum number of 24 work threads is selected as suitable but can be
changed if desired to any other suitable number subject to system resources and support.

The Mean Median application has two builds controlled by a pre-processor de�nition �QUADRATIC� located on
the top of MeanMedianMap.cpp as follows:
#d e f i n e QUADRATIC 1

#i f d e f QUADRATIC
t y p e d e f Quadrat i c< SquareRoot > MEDIAN_TYPE;

#e l s e

t y p e d e f Ra t i o n a l MEDIAN_TYPE;
#e n d i f

The data processing code is written using a type de�nition MEDIAN_TYPE, however the control of what exactly
type the MEDIAN_TYPE is, is delegated to the "QUADRATIC� pre-processor switch. The reason is problem
27 which prohibits instantiation of Quadratic objects with default constructor and thus it becomes impossible
for certain parts of the code to compile otherwise. There are other possible works around, however due time
restraints the author chose this typical approach, maintaining the clarity of the code. A proper solution should
be given after resolving problem 27. The QUADRATIC switch chooses between code compiled with Rational or
Quadratic numbers. The type de�nition MEDIAN_TYPE allows the application to be extended in future with other
than Rational and Quadratic types. Depending on the compilation Quadratic or Rational the Mean Median Map
application have di�erent command line options. The Rational numbers have e�ectively four di�erent computation

modes: equal-distant sequences on interval, single value, sequence in the form 2i−1+1
2i , sequence of the Fibonacci

numbers ratio Fn

Fn+1
. The Quadratic numbers can compute only one sequence at a time. Should one desire they

could expand these facilities and add other possible starting set de�nitions.

The Mean Median Map application records a general sequence information in �le named #de�ne DATA_FILE_NAME
TEXT("\\Data.txt") and path entered at application launch. For each computed sequence the application creates
a nested folder with name the index of the current sequence at the location given at start up with data recorded
during the computation. Note that existing �les are deleted without warning. Once the sequence is halted the
application records the �nal Xn, X

Sort
n , Mn, En and Mn −Mn−1 in a �le called Record_Final.html, a second �le

Record_Final.html.txt with the same content for machine use is also created at the same location. In addition for
each halt kernels is recorded a separate �les with appropriate name containing the halt kernel data. The software
is able to also record all sequence data periodically after number of iterations subject of appropriate command line
parameter. The later might be useful for slow halting sequences to allow observations on the sequence development.

Architecturally the Mean Median Map application is divided in two parts - parser part and execution part. The
parser part scans the command line to determine the requirements of the request. If the request is invalid it issues
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error, prints the parameters list and exits the application. If the request is valid, the parser processes it, creates a
DataSource object and passes the DataSource object to the execution part. The execution part is essentially a loop
managing the work threads. Upon available thread slot the execution part retrieves the next starting set from the
DataSource object, spawns a new work thread and passes the starting set to it for processing. This process repeats
until the user request is complete or the user terminates the application.

Figure 13. Work threads data transmission class diagram.

The Meam Median Map application uses the three points fact 5 and thus starting sets have the form {0, x, 1},
where x ∈

[
1
2 , 1

]
. For this reason the DataSource object need to return only one number x.

Figure 14. Class diagram of the DataSource abstract class and the derived from it Data Sources.
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Listing 9. The Mean Median Map Application. 
 
// 
// 
// MeanMedianMap.cpp : Defines the entry point for the console application. 
// 
//                Mean Median Map sequences computation application 
// 
// © Copyright 2010 - 2011 by Miroslav Bonchev Bonchev. All rights reserved. 
// 
// 
//****************************************************************************************************** 
 
 
#include "stdafx.h" 
#include "Common.h" 
#include "MAtom.h" 
#include "StringEx.h" 
#include "Pair.h" 
#include "Dictionary.h" 
#include "Integer.h" 
#include "Rational.h" 
#include "Quadratic.h" 
#include "Specialize.h" 
#include <crtdbg.h> 
 
 
 
// Declare Time and Space Domains 
class Clock {}; 
class Value {}; 
 
// Declare the Xn and Mn sequences 
class Xn {}; 
class Mn {}; 
 
 
#define POINT_0 0 
#define POINT_1 1 
 
 
#define MAX_COMPUTATION_THREAD_COUNT 24 
 
#if MAX_COMPUTATION_THREAD_COUNT < 1 
   #error The maximal thread count cannot be less than one. 
#endif 
 
 
#define DATA_FILE_NAME TEXT("\\Data.txt") 
 
 
#define UniverseQuadraticFunctorType SquareRoot 
#define UniverseQuadraticFunctorData SquareRoot( 5 ) 
 
 
#define QUADRATIC 1 
 
#ifdef QUADRATIC 
   typedef Quadratic< UniverseQuadraticFunctorType > MEDIAN_TYPE; 
#else 
   typedef Rational MEDIAN_TYPE; 
#endif 
 
 
class DataSource 
{ 
protected: 
   DWORD dwSequencesTotal; 
   DWORD dwCurrentSequence; 
 
   DataSource() : dwSequencesTotal( 0 ), dwCurrentSequence( 0 ) 
   { 
   } 
 
public: 
   virtual MEDIAN_TYPE GetNextNumber() = 0; 
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   virtual bool HasMoreToDo() const 
   { 
      return( dwCurrentSequence < dwSequencesTotal ); 
   } 
 
    
   virtual DWORD GetRemainingSequencesCount() 
   { 
      MASSERT( (0 != dwSequencesTotal) || (0 != dwCurrentSequence) ); 
 
      return( dwSequencesTotal - dwCurrentSequence ); 
   } 
 
   virtual bool ParseCommandLine( _TCHAR* argv[], const DWORD dwArg ) = 0; 
 
protected: 
   virtual bool ParseCommandLine2( _TCHAR* argv[], const DWORD dwArg, DWORD& dwStartingIndex, DWORD& dwTotalSequences ) 
   { 
      if( 7 != dwArg ) 
      { 
         if( 7 < dwArg ) 
         { 
            wprintf( TEXT("Invalid parameters call. Too many parameters.\n\n ") ); 
         } 
         else 
         { 
            wprintf( TEXT("Invalid parameters call. Too few parameters.\n\n ") ); 
         } 
 
         return( false ); 
      } 
 
 
      // Check that the starting index is OK. 
      dwStartingIndex = string( argv[5] ).operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwStartingIndex ).CompareNoCase( argv[5] ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: The entered starting index could not be interpreted correctly. Please enter a decimal 
number from 0 to 2^32-1.\n\n ") ); 
 
         return( false ); 
      } 
 
 
      // Check that the requested sequences is OK. 
      dwTotalSequences = string( argv[6] ).operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwTotalSequences ).CompareNoCase( argv[6] ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: The total sequences count could not be interpreted correctly. Please enter a decimal 
number from 1 to 2^32-1.\n\n ") ); 
 
         return( false ); 
      } 
 
 
      if( 0 == dwTotalSequences ) 
      { 
         wprintf( TEXT("Invalid parameters call: The total sequences cannot be zero. Please enter a decimal number from 1 to 2^32-
1.\n\n ") ); 
          
         return( false ); 
      } 
 
      return( true ); 
   } 
 
   virtual bool ParseCommandLine4( _TCHAR* argv[], const DWORD dwArg, Rational& rStart, Rational& rEnd, DWORD& dwTotalSequences ) 
   { 
      if( 9 != dwArg ) 
      { 
         if( 9 < dwArg ) 
         { 
            wprintf( TEXT("Invalid parameters call. Too many parameters.\n\n ") ); 
         } 
         else 
         { 
            wprintf( TEXT("Invalid parameters call. Too few parameters.\n\n ") ); 
         } 
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         return( false ); 
      } 
 
 
      // Check that the start numerator is OK. 
      DWORD dwStartNumerator = string( argv[5] ).operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwStartNumerator ).CompareNoCase( argv[5] ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: The entered start numerator could not be interpreted correctly. Please enter a 
decimal number from 0 to 2^32-1.\n\n ") ); 
 
         return( false ); 
      } 
 
 
      // Check that the end numerator is OK. 
      DWORD dwEndNumerator = string( argv[6] ).operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwEndNumerator ).CompareNoCase( argv[6] ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: The entered end numerator could not be interpreted correctly. Please enter a decimal 
number from 0 to 2^32-1.\n\n ") ); 
 
         return( false ); 
      } 
 
 
      if( dwStartNumerator > dwEndNumerator ) 
      { 
         wprintf( TEXT("Invalid parameters call: The start numerator cannot be bigger than the end numerator. Please enter a decimal 
number from 0 to 2^32-1.\n\n ") ); 
 
         return( false ); 
      } 
 
 
      // Check that the end numerator is OK. 
      DWORD dwDenominator = string( argv[7] ).operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwDenominator ).CompareNoCase( argv[7] ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: The entered denominator could not be interpreted correctly. Please enter a decimal 
number from 0 to 2^32-1.\n\n ") ); 
 
         return( false ); 
      } 
 
 
      // Check that the requested sequences is OK. 
      dwTotalSequences = string( argv[8] ).operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwTotalSequences ).CompareNoCase( argv[8] ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: The total sequences count could not be interpreted correctly. Please enter a decimal 
number from 1 to 2^32-1.\n\n ") ); 
 
         return( false ); 
      } 
 
 
      if( 0 == dwTotalSequences ) 
      { 
         wprintf( TEXT("Invalid parameters call: The total sequences cannot be zero. Please enter a decimal number from 1 to 2^32-
1.\n\n ") ); 
          
         return( false ); 
      } 
 
 
      if( (dwStartNumerator == dwEndNumerator) && (1 != dwTotalSequences) ) 
      { 
         wprintf( TEXT("Invalid parameters call: The start and end numbers are the same. The total sequences cannot be other than 
1.\n\n ") ); 
          
         return( false ); 
      } 
 
 
      rStart = Rational( specialize< Integer as sX::Numerator >::Initialize( dwStartNumerator ), specialize< Integer as 
sX::Denominator >::Initialize( dwDenominator ) ); 
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      rEnd   = Rational( specialize< Integer as sX::Numerator >::Initialize( dwEndNumerator ), specialize< Integer as sX::Denominator 
>::Initialize( dwDenominator ) ); 
 
      return( true ); 
   } 
 
 
   virtual bool ParseCommandLine3( _TCHAR* argv[], const DWORD dwArg, Rational& rX, Rational& rY, Rational& rZ, bool& bSquareRoot ) 
   { 
      if( 13 != dwArg ) 
      { 
         if( 13 < dwArg ) 
         { 
            wprintf( TEXT("Invalid parameters call. Too many parameters.\n\n ") ); 
         } 
         else 
         { 
            wprintf( TEXT("Invalid parameters call. Too few parameters.\n\n ") ); 
         } 
 
         return( false ); 
      } 
 
 
      // Check that the sign of the number is OK. 
      if( !string( argv[5] ).CompareNoCase( TEXT("-") ) && !string( argv[5] ).CompareNoCase( TEXT("+") ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the first rational number - sign is bad or missing.\n\n ") ); 
 
         return( false ); 
      } 
 
 
      // Get the rX. 
      MList< string > str( string( argv[6] ).Split( TEXT("/"), true, true ) ); 
      if( 2 != str.GetCount() ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the first rational number.\n\n ") ); 
 
         return( false ); 
      } 
 
      DWORD dwN = str.GetHead()->operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwN ).CompareNoCase( *str.GetHead() ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the first rational number.\n\n ") ); 
 
         return( false ); 
      } 
 
      DWORD dwD = str.GetTail()->operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwD ).CompareNoCase( *str.GetTail() ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the first rational number.\n\n ") ); 
 
         return( false ); 
      } 
 
      rX = Rational( string( argv[5] ).CompareNoCase( TEXT("-" ) ), specialize< Integer as sX::Numerator >::Initialize( dwN ),  
specialize< Integer as sX::Denominator >::Initialize( dwD ) ); 
 
 
 
 
      // Check that the sign of the functional is OK. 
      if( !string( argv[7] ).CompareNoCase( TEXT("-") ) && !string( argv[7] ).CompareNoCase( TEXT("+") ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the second rational number - sign is bad or missing.\n\n ") ); 
 
         return( false ); 
      } 
 
      // Check that rY is OK. 
      str = string( argv[8] ).Split( TEXT("/"), true, true ); 
      if( 2 != str.GetCount() ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the second rational number.\n\n ") ); 
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         return( false ); 
      } 
 
      dwN = str.GetHead()->operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwN ).CompareNoCase( *str.GetHead() ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the second rational number.\n\n ") ); 
 
         return( false ); 
      } 
 
      dwD = str.GetTail()->operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwD ).CompareNoCase( *str.GetTail() ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the second rational number.\n\n ") ); 
 
         return( false ); 
      } 
 
      rY = Rational( string( argv[7] ).CompareNoCase( TEXT("-") ), specialize< Integer as sX::Numerator >::Initialize( dwN ),  
specialize< Integer as sX::Denominator >::Initialize( dwD ) ); 
 
 
 
 
      // Check that the sign of the number inside the functional is OK. 
      if( !string( argv[10] ).CompareNoCase( TEXT("-") ) && !string( argv[7] ).CompareNoCase( TEXT("+") ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the third rational number - sign is bad or missing.\n\n ") ); 
 
         return( false ); 
      } 
 
 
      // Check that rZ is OK. 
      str = string( argv[11] ).Split( TEXT("/"), true, true ); 
      if( 2 != str.GetCount() ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the third rational number.\n\n ") ); 
 
         return( false ); 
      } 
 
      dwN = str.GetHead()->operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwN ).CompareNoCase( *str.GetHead() ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the third rational number.\n\n ") ); 
 
         return( false ); 
      } 
 
      dwD = str.GetTail()->operator unsigned long(); 
      if( !string( string::FF, TEXT("%u"), dwD ).CompareNoCase( *str.GetTail() ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the third rational number.\n\n ") ); 
 
         return( false ); 
      } 
 
      rZ = Rational( string( argv[10] ).CompareNoCase( TEXT("-") ), specialize< Integer as sX::Numerator >::Initialize( dwN ),  
specialize< Integer as sX::Denominator >::Initialize( dwD ) ); 
 
 
 
      // Get the function 
      const string strFunction( argv[9] ); 
 
      if( !strFunction.Right( 1 ).CompareNoCase( TEXT("(") ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the function - missing opening bracket.\n\n ") ); 
 
         return( false ); 
      } 
 
      if( !string( argv[12] ).CompareNoCase( TEXT(")") ) ) 
      { 
         wprintf( TEXT("Invalid parameters call: Error around the function - missing closing bracket.\n\n ") ); 
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         return( false ); 
      } 
 
      // For now I have only square roots functor implementation. 
      if( strFunction.LeftFromRight( 1 ).CompareNoCase( TEXT("sqrt") ) ) 
      { 
         bSquareRoot = true; 
 
         return( true ); 
      } 
 
      wprintf( TEXT("Invalid parameters call: Error around the function - unknown functor name.\n\n ") ); 
 
      return( false ); 
   } 
}; 
 
 
class Fibonacci : public DataSource 
{ 
private: 
   DWORD dwFn; 
   DWORD dwFm; 
 
private: 
   void GetFibonacci( DWORD& dwFn, DWORD& dwFm ) 
   { 
      const DWORD dwA = dwFn; 
      dwFn = dwFm; 
      dwFm = dwA + dwFm; 
   } 
 
public: 
   Fibonacci() : dwFn( 0 ), dwFm( 1 ) {} 
   ~Fibonacci() {} 
 
   MEDIAN_TYPE GetNextNumber() 
   { 
      GetFibonacci( dwFn, dwFm ); 
 
      dwCurrentSequence++; 
 
      return( MEDIAN_TYPE( Rational( specialize< Integer as sX::Numerator >::Initialize( dwFn ), specialize< Integer as 
sX::Denominator >::Initialize( dwFm ) ) ) ); 
   } 
 
 
   virtual bool ParseCommandLine( _TCHAR* argv[], const DWORD dwArg ) 
   { 
      DWORD dwStartingIndex( 0 ); 
      if( !__super::ParseCommandLine2( argv, dwArg, dwStartingIndex, dwSequencesTotal ) ) 
      { 
         return( false ); 
      } 
 
      for( DWORD dwSkipIndex = 0; dwSkipIndex < dwStartingIndex; dwSkipIndex++ ) 
      { 
         GetNextNumber(); 
      } 
 
      dwCurrentSequence = 0; 
 
      return( true ); 
   } 
} g_Fibonacci; 
 
 
class Binary : public DataSource 
{ 
private: 
   DWORD dwPower; 
 
public: 
   Binary() : dwPower( 0 ) {} 
   ~Binary() {} 
 
   MEDIAN_TYPE GetNextNumber() 
   { 
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      dwPower++; 
      dwCurrentSequence++; 
 
      return( MEDIAN_TYPE( Rational( specialize< Integer as sX::Numerator >::Initialize( Integer( 2 ).ToPower( dwPower - 1 ) + 1 ), 
specialize< Integer as sX::Denominator >::Initialize( Integer( 2 ).ToPower( dwPower ) ) ) ) ); 
   } 
 
   virtual bool ParseCommandLine( _TCHAR* argv[], const DWORD dwArg ) 
   { 
      DWORD dwStartingIndex( 0 ); 
      if( !__super::ParseCommandLine2( argv, dwArg, dwStartingIndex, dwSequencesTotal ) ) 
      { 
         return( false ); 
      } 
 
      for( DWORD dwSkipIndex = 0; dwSkipIndex < dwStartingIndex; dwSkipIndex++ ) 
      { 
         GetNextNumber(); 
      } 
 
      dwCurrentSequence = 0; 
 
      return( true ); 
   } 
} g_Binary; 
 
 
class Equalidistant : public DataSource 
{ 
private: 
   MEDIAN_TYPE mtNext; 
   MEDIAN_TYPE mtStep; 
 
public: 
   Equalidistant() : mtNext( Rational( specialize< Integer as sX::Numerator >::Initialize( 1 ), specialize< Integer as sX::Denominator 
>::Initialize( 2 ) ) ), 
                     mtStep( Rational( specialize< Integer as sX::Numerator >::Initialize( 1 ), specialize< Integer as sX::Denominator 
>::Initialize( 2 ) ) ) 
   { 
   } 
   ~Equalidistant() {} 
 
   MEDIAN_TYPE GetNextNumber() 
   { 
      mtNext = mtNext + mtStep; 
 
      dwCurrentSequence++; 
 
      return( mtNext ); 
   } 
 
 
   // Method [0.5, 1] Equal-distant: E [start numerator] [end numerator] [denominator] [total sequences]  e.g. E 514 515 1000 10000 
   virtual bool ParseCommandLine( _TCHAR* argv[], const DWORD dwArg ) 
   { 
      Rational rStart; 
      Rational rEnd; 
 
      if( !__super::ParseCommandLine4( argv, dwArg, rStart, rEnd, dwSequencesTotal ) ) 
      { 
         return( false ); 
      } 
 
      if( 1 != dwSequencesTotal ) 
      { 
         mtStep = (rEnd - rStart) / (dwSequencesTotal - 1); 
         mtNext = rStart - mtStep; 
      } 
      else 
      { 
         mtStep = 0; 
         mtNext = rStart; 
      } 
 
      return( true ); 
   } 
} g_Equalidistant; 
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#ifdef QUADRATIC 
class SingleQuadratic : public DataSource 
{ 
private: 
   MEDIAN_TYPE mtNext; 
 
public: 
   SingleQuadratic() : mtNext( Rational( true, specialize< Integer as sX::Numerator >::Initialize( 1 ), specialize< Integer as 
sX::Denominator >::Initialize( 2 ) ), Functional< UniverseQuadraticFunctorType >( 1, UniverseQuadraticFunctorData ) ) 
   { 
   } 
   ~SingleQuadratic() 
   { 
   } 
 
   MEDIAN_TYPE GetNextNumber() 
   { 
      dwCurrentSequence++; 
 
      return( mtNext ); 
   } 
 
 
   // Method a/b+c/d*sqrt(e/f) Quadratic: Q [numerator]/[denominator] [numerator]/[denominator] [numerator]/[denominator]  e.g. Q 1/2 
3/4 5/8 
   virtual bool ParseCommandLine( _TCHAR* argv[], const DWORD dwArg ) 
   { 
      // rX + rY * sqrt( rZ ) 
      Rational rX; 
      Rational rY; 
      Rational rZ; 
      bool bSquareRoot( false ); 
 
      MSmartPtr< Functor > ptrFunctor; 
 
      if( !__super::ParseCommandLine3( argv, dwArg, rX, rY, rZ, bSquareRoot ) ) 
      { 
         return( false ); 
      } 
 
 
      if( bSquareRoot ) 
      { 
         mtNext = Quadratic< UniverseQuadraticFunctorType >( rX, Functional< UniverseQuadraticFunctorType >( rY, 
UniverseQuadraticFunctorType( rZ ) ) );  
      } 
      else 
      { 
         MASSERT( FALSE ); 
      } 
 
 
      dwCurrentSequence = 0; 
      dwSequencesTotal  = 1; 
 
      return( true ); 
   } 
} g_Quadratic; 
#endif 
 
 
void PrintTable( const bool bTrace, 
                 const string& strFilename, 
                 const string& strTitle, 
                 MList< specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > > > listXn_ByValue, 
                 MList< specialize< MEDIAN_TYPE, specialize< Xn, Clock > > > listXn_ByTime, 
                 MList< specialize< MEDIAN_TYPE, specialize< Mn, Clock > > > listMedians ) 
{ 
   MStringEx< char >( MStringEx< char >::FF, "<html><head><title>%s</title></head><body style='font-family: Arial'>\r\n<table 
border='0' cellpadding='3' cellspacing='0' >\r\n", strTitle.GetAsMultiByte().GetMemory() ).SaveAsFile( strFilename, false ); 
 
 
#ifdef QUADRATIC 
   MEDIAN_TYPE mtMnSum( 0, Functional< UniverseQuadraticFunctorType >( 0, UniverseQuadraticFunctorData ) ), mtXnSum( 0, Functional< 
UniverseQuadraticFunctorType >( 0, UniverseQuadraticFunctorData ) ); 
#else 
   MEDIAN_TYPE mtMnSum, mtXnSum; 



 

84 
 

#endif 
 
 
   if( bTrace ) { TRACE( TEXT("\n\n") ); } 
 
 
   for( DWORD dwIndex = 0; dwIndex < listMedians.GetCount(); dwIndex++ ) 
   { 
      mtMnSum += *listMedians[dwIndex]; 
      mtXnSum += *listXn_ByTime[dwIndex]; 
 
      if( 0 == dwIndex ) 
      { 
         string( string::FF, TEXT("<tr>\ 
                                  <td style='font-size: 16px; padding-left:0px; text-align:center;'>Clocks</td>\ 
                                       <td style='font-size: 16px; padding-left:100px; text-align:center;'>Xn</td>\ 
                                       <td style='font-size: 16px; padding-left:100px; text-align:center;'>Xn Sorted</td>\ 
                                       <td style='font-size: 16px; padding-left:100px; text-align:center;'>Mn</td>\ 
                                       <td style='font-size: 16px; padding-left:100px; text-align:center;'>En</td>\ 
                                       <td style='font-size: 16px; padding-left:100px; text-align:center;'>M[n] - M[n-1]</td>\ 
                                       </tr>") ).GetAsMultiByte().AddToFile( strFilename, false ); 
 
         string( string::FF, TEXT("Clocks\tXn\tXn Sorted\tMn\tEn\tM[n] - M[n-1]\r\n") ).GetAsMultiByte().SaveAsFile( strFilename + 
TEXT(".txt"), false ); 
      } 
 
 
      const DWORD dwIndexBase( (DWORD)1 ); 
      string( string::FF, TEXT("<tr bgcolor='%s'>\ 
                                    <td style='text-align:right;'>%d</td>\ 
                                    <td style='text-align:right;'>%s</td>\ 
                                    <td style='text-align:right;'>%s</td>\ 
                                    <td style='text-align:right;'>%s</td>\ 
                                    <td style='text-align:right;'>%s</td>\ 
                                    <td style='text-align:right;'>%s</td>\ 
                                 </tr>"), 
                                 0 == (1 & (dwIndexBase + dwIndex)) ? TEXT("#f4fff4") : TEXT("white"), 
                          dwIndexBase + dwIndex, 
                          (LPCTSTR)listXn_ByTime[dwIndex]->PrintAsHtmlCell(), 
                          (LPCTSTR)listXn_ByValue[dwIndex]->GetLabel().PrintAsHtmlCell(), 
                          (LPCTSTR)listMedians[dwIndex]->PrintAsHtmlCell(), 
                          (LPCTSTR)(mtXnSum / (dwIndex + 1)).PrintAsHtmlCell(), 
                          (LPCTSTR)(0 != dwIndex ? (*listMedians[dwIndex] - *listMedians[dwIndex-1]).PrintAsHtmlCell() : string( 
TEXT("-") ) ) ).GetAsMultiByte().AddToFile( strFilename, false ); 
 
      if( bTrace ) 
      { 
         TRACE( string( string::FF, TEXT("%.3d                %s                %s             %s            %s           %s\n"), 
                     dwIndexBase + dwIndex, 
                     (LPCTSTR)listXn_ByTime[dwIndex]->PrintAsDoubleInDecimalNotation( 16 ), 
                     (LPCTSTR)listXn_ByValue[dwIndex]->GetLabel().PrintAsDoubleInDecimalNotation( 16 ), 
                     (LPCTSTR)listMedians[dwIndex]->PrintAsDoubleInDecimalNotation( 16 ), 
                     (LPCTSTR)(mtXnSum / (dwIndex + 1)).PrintAsDoubleInDecimalNotation( 16 ), 
                     (LPCTSTR)(0 != dwIndex ? (*listMedians[dwIndex] - *listMedians[dwIndex-1]).PrintAsDoubleInDecimalNotation( 16 ) : 
string( TEXT("-") ) ) ).GetAsMultiByte().GetMemory() ); 
      } 
 
 
      string( string::FF, TEXT("%.3d\t%s\t%s\t%s\t%s\t%s\r\n"), 
              dwIndexBase + dwIndex, 
              (LPCTSTR)listXn_ByTime[dwIndex]->PrintAsDoubleInDecimalNotation( 16 ), 
              (LPCTSTR)listXn_ByValue[dwIndex]->GetLabel().PrintAsDoubleInDecimalNotation( 16 ), 
              (LPCTSTR)listMedians[dwIndex]->PrintAsDoubleInDecimalNotation( 16 ), 
              (LPCTSTR)(mtXnSum / (dwIndex + 1)).PrintAsDoubleInDecimalNotation( 16 ), 
              (LPCTSTR)(0 != dwIndex ? (*listMedians[dwIndex] - *listMedians[dwIndex-1]).PrintAsDoubleInDecimalNotation( 16 ) : 
string( TEXT("-") ) ) 
            ).GetAsMultiByte().DecrementSize( MMemory< char >::MemUnits( 1 ) ).AddToFile( strFilename + TEXT(".txt") ); 
   } 
 
 
   if( bTrace ) { TRACE( TEXT("\n\n") ); } 
 
 
   MStringEx< char >( "</table>" ).AddToFile( strFilename, false ); 
 
 
   MStringEx< char >( "</body></html>\r\n" ).AddToFile( strFilename, false ); 
} 
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MEDIAN_TYPE Go( const DWORD dwDeepTrace, const string& strFilenameBase, const MEDIAN_TYPE mtStartPoint, MList< specialize< Pair< 
MEDIAN_TYPE, DWORD >, specialize< Xn, Value > > >& listXn_ByValue, MList< specialize< MEDIAN_TYPE, specialize< Xn, Clock > > >& 
listXn_ByTime, MList< specialize< MEDIAN_TYPE, specialize< Mn, Clock > > >& listMedians ) 
{ 
   MASSERT( listXn_ByValue.IsEmpty() ); 
   MASSERT( listXn_ByTime.IsEmpty() ); 
   MASSERT( listMedians.IsEmpty() ); 
 
 
   listXn_ByValue.Empty(); 
   listXn_ByTime.Empty(); 
   listMedians.Empty(); 
 
 
   // Start the two Xn sequences: One sorted by values, and one sorted by clocks/time. 
   listXn_ByValue.AddHead( new specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > >( specialize< Pair< MEDIAN_TYPE, DWORD 
>, specialize< Xn, Value > >::Initialize( Pair< MEDIAN_TYPE, DWORD >( POINT_0, 1 ) ) ) ); 
   listXn_ByTime.AddHead(  new specialize< MEDIAN_TYPE, specialize< Xn, Clock > >( specialize< MEDIAN_TYPE, specialize< Xn, Clock > 
>::Initialize( 0 ) ) ); 
 
   listXn_ByValue.AddTail( new specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > >( specialize< Pair< MEDIAN_TYPE, DWORD 
>, specialize< Xn, Value > >::Initialize( Pair< MEDIAN_TYPE, DWORD >( mtStartPoint, 2 ) ) ) ); 
   listXn_ByTime.AddTail(  new specialize< MEDIAN_TYPE, specialize< Xn, Clock > >( specialize< MEDIAN_TYPE, specialize< Xn, Clock > 
>::Initialize( mtStartPoint ) ) ); 
 
   listXn_ByValue.AddTail( new specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > >( specialize< Pair< MEDIAN_TYPE, DWORD 
>, specialize< Xn, Value > >::Initialize( Pair< MEDIAN_TYPE, DWORD >( POINT_1, 3 ) ) ) ); 
   listXn_ByTime.AddTail(  new specialize< MEDIAN_TYPE, specialize< Xn, Clock > >( specialize< MEDIAN_TYPE, specialize< Xn, Clock > 
>::Initialize( 1 ) ) ); 
 
   listMedians.AddTail( new specialize< MEDIAN_TYPE, specialize< Mn, Clock > >( specialize< MEDIAN_TYPE, specialize< Mn, Clock > 
>::Initialize( listXn_ByValue[0]->GetLabel() ) ) ); 
   if( !strFilenameBase.IsEmpty() ) PrintTable( false, strFilenameBase + string( string::FF, TEXT("%.5d"), + listMedians.GetCount() ) 
+ TEXT(".htm"), TEXT(""), listXn_ByValue, listXn_ByTime, listMedians ); 
 
   listMedians.AddTail( new specialize< MEDIAN_TYPE, specialize< Mn, Clock > >( specialize< MEDIAN_TYPE, specialize< Mn, Clock > 
>::Initialize( (listXn_ByValue[0]->GetLabel() + listXn_ByValue[1]->GetLabel()) / 2 ) ) ); 
   if( !strFilenameBase.IsEmpty() ) PrintTable( false, strFilenameBase + string( string::FF, TEXT("%.5d"), + listMedians.GetCount() ) 
+ TEXT(".htm"), TEXT(""), listXn_ByValue, listXn_ByTime, listMedians ); 
    
   listMedians.AddTail( new specialize< MEDIAN_TYPE, specialize< Mn, Clock > >( specialize< MEDIAN_TYPE, specialize< Mn, Clock > 
>::Initialize( listXn_ByValue[1]->GetLabel() ) ) ); 
   if( !strFilenameBase.IsEmpty() ) PrintTable( false, strFilenameBase + string( string::FF, TEXT("%.5d"), + listMedians.GetCount() ) 
+ TEXT(".htm"), TEXT(""), listXn_ByValue, listXn_ByTime, listMedians ); 
 
 
   MEDIAN_TYPE mtSum_n( listXn_ByValue[0]->GetLabel() + listXn_ByValue[1]->GetLabel() + listXn_ByValue[2]->GetLabel() ); 
 
 
   MList< specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > > >::MP< specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< 
Xn, Value > > >* pMedian( listXn_ByValue.GetHeadMP()->GetNext() ); 
 
   MEDIAN_TYPE mtMed_n( pMedian->GetObject()->GetLabelRef() ); 
 
   DWORD dwCurrentTrace = 1; 
   for( MEDIAN_TYPE mtX_n_plus_1 = (listXn_ByValue.GetCount() + 1) * mtMed_n - mtSum_n; mtX_n_plus_1 != mtMed_n; mtX_n_plus_1 = 
(listXn_ByValue.GetCount() + 1) * mtMed_n - mtSum_n ) 
   { 
      // Lemma 12. X[n+1] >= M[n]. 
      MASSERT( mtX_n_plus_1 >= mtMed_n ); 
 
 
      mtSum_n += mtX_n_plus_1; 
 
 
      // Add the new Xn in the clock sorted sequence. 
      listXn_ByTime.AddTail( new specialize< MEDIAN_TYPE, specialize< Xn, Clock > >( specialize< MEDIAN_TYPE, specialize< Xn, Clock > 
>::Initialize( mtX_n_plus_1 ) ) ); 
 
 
      // Insert dX_np1 in the sequence and find the new Median.h 
      for( MList< specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > > >::MP< specialize< Pair< MEDIAN_TYPE, DWORD >, 
specialize< Xn, Value > > >* pMP( pMedian ); NULL != pMP; pMP= pMP->GetNext() ) 
      { 
         if( mtX_n_plus_1 < pMP->GetObject()->GetLabel() ) 
         { 
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            // Insert median here. It is important that the inequality is strict! <= would insert the  
            // element in the correct place in respect to the values, but that will make the pointer to 
            // the median to point to the wrong place as the sequence will be shifted with one element. 
            pMP = listXn_ByValue.AddBehind( pMP->GetPrevious(), new specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > >( 
specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > >::Initialize( Pair< MEDIAN_TYPE, DWORD >( mtX_n_plus_1, 
listXn_ByTime.GetCount() ) ) ) ); 
 
            break; 
         } 
      } 
       
      if( listXn_ByTime.GetCount() != listXn_ByValue.GetCount() ) 
      { 
         // The mtX_n_plus_1 has not yet been added.  
         listXn_ByValue.AddTail( new specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > >( specialize< Pair< MEDIAN_TYPE, 
DWORD >, specialize< Xn, Value > >::Initialize( Pair< MEDIAN_TYPE, DWORD >( mtX_n_plus_1, listXn_ByTime.GetCount() ) ) ) ); 
      } 
 
 
      if( 0 == (listXn_ByValue.GetCount() & 1) ) 
      { 
         mtMed_n = (pMedian->GetObject()->GetLabelRef() + pMedian->GetNext()->GetObject()->GetLabelRef())/2; 
         pMedian = pMedian->GetNext(); 
      } 
      else 
      { 
         mtMed_n = pMedian->GetObject()->GetLabelRef(); 
      } 
 
 
      listMedians.AddTail( new specialize< MEDIAN_TYPE, specialize< Mn, Clock > >( specialize< MEDIAN_TYPE, specialize< Mn, Clock > 
>::Initialize( mtMed_n ) ) ); 
 
 
      if( !strFilenameBase.IsEmpty() ) 
      { 
         if( dwDeepTrace == dwCurrentTrace ) 
         { 
            PrintTable( false, strFilenameBase + string( string::FF, TEXT("%.6d.htm"), + listMedians.GetCount() ), TEXT(""), 
listXn_ByValue, listXn_ByTime, listMedians ); 
 
            dwCurrentTrace = 0; 
         } 
 
         wprintf( TEXT("Medians Count: %d\n "), listMedians.GetCount() ); 
      } 
 
      dwCurrentTrace++; 
   } 
 
 
   MASSERT( listMedians.GetCount() == listXn_ByValue.GetCount() ); 
 
   return( mtMed_n ); 
} 
 
 
struct CalculationData 
{ 
   const DWORD       dwIndex; 
   const MEDIAN_TYPE mtStartPoint; 
   const string      strDataFolder; 
   const HANDLE      heFinished; 
   const DWORD        dwDeepTrace; 
 
   CalculationData( const DWORD dwIndex, 
                    const MEDIAN_TYPE& mtStartPoint, 
                    const string& strDataFolder, 
                    const HANDLE heFinished, 
                    const DWORD dwDeepTrace ) 
      :  dwIndex( dwIndex ), 
         mtStartPoint( mtStartPoint ), 
         strDataFolder( strDataFolder ), 
         heFinished( heFinished ), 
         dwDeepTrace( dwDeepTrace ) 
   { 
   } 
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   ~CalculationData() 
   { 
   } 
}; 
 
 
DWORD WINAPI CalculateHalt( LPVOID pvCalculationData ) 
{ 
   MSmartPtr< CalculationData > prtData( (CalculationData*)pvCalculationData ); 
 
 
   // Prepare recording location and properties. 
   const string2z strFolder( prtData->strDataFolder + string( string::FF, TEXT("\\%.10d"), (LPCTSTR)prtData->dwIndex ) ); 
   const string   strRecord( string( strFolder.GetMemory() ) + TEXT("\\Record_") ); 
 
 
   SHFILEOPSTRUCT sfs = { 0 }; 
   sfs.wFunc  = FO_DELETE; 
   sfs.pFrom  = strFolder.GetMemory(); 
   sfs.fFlags = FOF_ALLOWUNDO | FOF_SILENT | FOF_NOCONFIRMATION | FOF_NOERRORUI | FOF_NOCONFIRMMKDIR; 
 
   ::SHFileOperation( &sfs ); 
   ::CreateDirectory( strFolder, NULL ); 
 
 
   // Calculation data holders. 
   MList< specialize< Pair< MEDIAN_TYPE, DWORD >, specialize< Xn, Value > > > listXn_ByValue; 
   MList< specialize< MEDIAN_TYPE, specialize< Xn, Clock > > > listXn_ByTime; 
   MList< specialize< MEDIAN_TYPE, specialize< Mn, Clock > > > listMedians; 
 
 
   // Do the calculation. 
   const MEDIAN_TYPE mtHalt( Go( prtData->dwDeepTrace, prtData->dwDeepTrace ? strRecord : TEXT(""), prtData->mtStartPoint, 
listXn_ByValue, listXn_ByTime, listMedians ) ); 
 
 
   // Print the final data. 
   PrintTable( false, strRecord + TEXT("Final.html"), TEXT(""), listXn_ByValue, listXn_ByTime, listMedians ); 
 
 
   // Find the Centre. 
   Pair< DWORD, DWORD > prCentre; 
   for( DWORD dwIndex = 0; dwIndex < listXn_ByValue.GetCount(); dwIndex++ ) 
   { 
      DWORD dwPosS( 0 ); 
      DWORD dwPosF( 0 ); 
 
      if( listXn_ByValue[dwIndex]->GetLabelRef() == mtHalt ) 
      { 
         dwPosS = dwIndex; 
         dwPosF = dwIndex; 
 
         for( DWORD dwIndexInner = dwIndex + 1; (dwIndexInner < listXn_ByValue.GetCount()) && (listXn_ByValue[dwIndex]->GetLabelRef() 
== listXn_ByValue[dwIndexInner]->GetLabelRef()); dwIndexInner++ ) 
         { 
            dwIndex = dwPosF = dwIndexInner; 
         } 
 
         prCentre = Pair< DWORD, DWORD >( dwPosS, dwPosF - dwPosS + 1 ); 
 
         break; 
      } 
   } 
 
 
   // Find Duplicates 
   MList< Pair< MEDIAN_TYPE, Pair< DWORD, DWORD > > > listDuplicate; 
   for( DWORD dwIndex = 0; dwIndex < listXn_ByValue.GetCount() - 1; dwIndex++ ) 
   { 
      DWORD dwPosS( 0 ); 
      DWORD dwPosF( 0 ); 
 
      if( listXn_ByValue[dwIndex]->GetLabelRef() == listXn_ByValue[dwIndex+1]->GetLabelRef() ) 
      { 
         dwPosS = dwIndex; 
         dwPosF = dwIndex; 
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         for( DWORD dwIndexInner = dwIndex + 1; (dwIndexInner < listXn_ByValue.GetCount()) && (listXn_ByValue[dwIndex]->GetLabelRef() 
== listXn_ByValue[dwIndexInner]->GetLabelRef()); dwIndexInner++ ) 
         { 
            dwIndex = dwPosF = dwIndexInner; 
         } 
      } 
 
      if( dwPosS != dwPosF ) 
      { 
         listDuplicate.AddTail( new Pair< MEDIAN_TYPE, Pair< DWORD, DWORD > >( listXn_ByValue[dwPosS]->GetLabelRef(), Pair< DWORD, 
DWORD >( dwPosS, dwPosF - dwPosS + 1 ) ) ); 
      } 
   } 
 
 
   const string strMatchesFilename( 1 < listDuplicate.GetCount() ? strRecord + TEXT("Kernels.txt") : TEXT("-") ); 
 
   // Record this value data. 
   string( string::FF, 
           TEXT("%d\t%s\t\"%s\"\t\t\t%s\t\"%s\"\t\t\t%s\t\"%s\"\t\t\t%d\t%d\t%d\t\"%s\"\r\n"), 
           prtData->dwIndex,                                                                           // index 
           prtData->mtStartPoint.PrintAsDoubleInDecimalNotation( 16 ).GetMemory(),                     // start number 
           prtData->mtStartPoint.Print().GetMemory(),                                                  // start number as rational 
           mtHalt.PrintAsDoubleInDecimalNotation( 16 ).GetMemory(),                                    // halt value 
           mtHalt.Print().GetMemory(),                                                                 // halt value as rational 
           listXn_ByValue.GetTail()->GetLabelRef().PrintAsDoubleInDecimalNotation( 16 ).GetMemory(),   // Max Value 
           listXn_ByValue.GetTail()->GetLabelRef().Print().GetMemory(),                                // Max Value as rational 
           prCentre.GetLabel(),                                                                        // centre position 
           prCentre.GetValue(),                                                                        // centre size 
           listXn_ByValue.GetCount(),                                                                  // transit clocks 
           strMatchesFilename.GetMemory()                                                              // Kernels  
           ).GetAsMultiByte().AddToFile( prtData->strDataFolder + DATA_FILE_NAME, false ); 
 
 
 
   // Record the Kernels 
   if( 1 < listDuplicate.GetCount() ) 
   { 
      // Overwrite any existing file and set file header. 
      MStringEx< char >( "Value\tPosition\tRepeats\r\n" ).SaveAsFile( strMatchesFilename, false );  
 
      for( DWORD dwIndex = 0; dwIndex < listDuplicate.GetCount(); dwIndex++ ) 
      { 
         MStringEx< char >( MStringEx< char >::FF, 
                            "%s\t%d\t%d\r\n", 
                            listDuplicate[dwIndex]->GetLabelRef().PrintAsDoubleInDecimalNotation( 16 ).GetAsMultiByte().GetMemory(), 
                            listDuplicate[dwIndex]->GetValueRef().GetLabel(), 
                            listDuplicate[dwIndex]->GetValueRef().GetValueRef() ).AddToFile( strMatchesFilename, false );  
      } 
   } 
 
 
   SetEvent( prtData->heFinished ); 
 
 
   return( 0 ); 
} 
 
 
void PrintProgramCall() 
{ 
   wprintf( TEXT("Parameters:\n ") ); 
   wprintf( TEXT("Target path: must exists                         e.g. C:\\path\n ") ); 
   wprintf( TEXT("Max number of threads: 1 to %d                   e.g. 12\n "), MAX_COMPUTATION_THREAD_COUNT ); 
   wprintf( TEXT("Record every X-th intermediate sequence: 0 - record none or integer number \n ") ); 
#ifndef QUADRATIC 
   wprintf( TEXT("Method Fibonacci #:            F [start index] [total sequences]  e.g. F 41 25\n ") ); 
   wprintf( TEXT("Method (2^(i-1)+1)/2^i:        B [start index] [total sequences]  e.g. B 41 25\n ") ); 
   wprintf( TEXT("Method [0.5, 1] Equal-distant: E [start numerator] [end numerator] [denominator] [total sequences]  e.g. E 514 515 
1000 10000\n ") ); 
   wprintf( TEXT("\n\n" ) ); 
   wprintf( TEXT("Example call: app-name C:\\folder\\fib 12 0 F 41 25\n") ); 
   wprintf( TEXT("Example call: app-name C:\\folder\\fib 12 0 E 514 515 1000 10000") ); 
#else 
   wprintf( TEXT("Method a/b+c/d*sqrt(e/f) Quadratic: [+ or -] Q [numerator]/[denominator] [+ or -] [numerator]/[denominator] 
sqrt([numerator]/[denominator])  e.g. Q 1/2 3/4 5/8\n ") ); 
   wprintf( TEXT("\n\n" ) ); 
   wprintf( TEXT("Example call: app-name C:\\m1\\fib 1 Y Q - 1/2 + 1/2 sqrt( + 5/1 )") ); 
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#endif 
   wprintf( TEXT("\n\n" ) ); 
} 
 
 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
   wprintf( TEXT("\nMean-Median problem computation application\n") ); 
   wprintf( TEXT("Copyright (c) 2010 - 2011 Miroslav Bonchev Bonchev. All rights reserved.\n\n" ) ); 
   wprintf( TEXT("This software uses the Atomic Memory Model by Miroslav Bonchev Bonchev.\n" ) ); 
   wprintf( TEXT("This software uses the Object Specialization Model by Miroslav Bonchev Bonchev.\n" ) ); 
   wprintf( TEXT("This software uses the Proper Numbers Library by Miroslav Bonchev Bonchev.\n" ) ); 
   wprintf( TEXT("\n\nFor more information please visit:\n\n" ) ); 
   wprintf( TEXT("http://www.mbbsoftware.com\n" ) ); 
   wprintf( TEXT("http://www.mbbsoftware.com/Software/AtomicMemoryModel/Default.aspx\n" ) ); 
   wprintf( TEXT("http://www.mbbsoftware.com/Software/ProperNumbersLibrary/Default.aspx\n\n" ) ); 
 
    
   if( 7 > argc ) 
   { 
      wprintf( TEXT("Invalid parameters call. Too few parameters.\n\n ") ); 
 
      PrintProgramCall(); 
 
      return( 0 ); 
   } 
 
 
   // Retrieve the target path. 
   const string strTargetPath( argv[1] ); 
   const DWORD dwPathAttrib( ::GetFileAttributes( strTargetPath ) ); 
 
   if( INVALID_FILE_ATTRIBUTES == dwPathAttrib ) 
   { 
      wprintf( TEXT("Invalid parameters call: Path does not exists.\n\n ") ); 
 
      PrintProgramCall(); 
 
      return( 0 ); 
   } 
 
   if( 0 == (FILE_ATTRIBUTE_DIRECTORY & dwPathAttrib) ) 
   { 
      wprintf( TEXT("Invalid parameters call: The entered target path exists but is a file.\n\n ") ); 
 
      PrintProgramCall(); 
 
      return( 0 ); 
   } 
 
 
   // Retrieve the computational threads count. 
   const DWORD dwComputationalThreads( string( argv[2] ).operator unsigned long() ); 
   if( !IsInRange< DWORD, true, DWORD, true, DWORD >( 1, dwComputationalThreads, MAX_COMPUTATION_THREAD_COUNT ) ) 
   { 
      wprintf( TEXT("Invalid parameters call: The number of computational threads must be between 1 and 24 inclusive.\n\n ") ); 
 
      PrintProgramCall(); 
 
      return( 0 ); 
   } 
 
 
   // Retrieve the trace depth. 
   const DWORD dwDeepTrace( string( argv[3] ).operator unsigned long() ); 
   if( !string( string::FF, TEXT("%u"), dwDeepTrace ).CompareNoCase( argv[3] ) ) 
   { 
      wprintf( TEXT("Invalid parameters call: The deep trace parameter is invalid. Please enter a decimal number from 0 to 2^32-1.\n\n 
") ); 
 
      PrintProgramCall(); 
 
      return( 0 ); 
   } 
 
 
   // Retrieve the required computation method. 
   DataSource* pDataSource( NULL ); 
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   // Fibonacci Data Source 
   if( string( argv[4] ).CompareNoCase( TEXT("F") ) ) 
   { 
      pDataSource = &g_Fibonacci; 
   } 
 
   // Binary Data Source 
   if( string( argv[4] ).CompareNoCase( TEXT("B") ) ) 
   { 
      pDataSource = &g_Binary; 
   } 
 
   // Equal-distant Data Source 
   if( string( argv[4] ).CompareNoCase( TEXT("E") ) ) 
   { 
      pDataSource = &g_Equalidistant; 
   } 
 
#ifdef QUADRATIC 
   // Quadratic Data Source 
   if( string( argv[4] ).CompareNoCase( TEXT("Q") ) ) 
   { 
      pDataSource = &g_Quadratic; 
   } 
#endif 
 
   // Check that data source was specified. 
   if( NULL == pDataSource ) 
   { 
      wprintf( TEXT("Invalid parameters call: No valid data source was specified. Please enter a valid data source data generator 
identification letter.\n\n ") ); 
          
      PrintProgramCall(); 
 
      return( 0 ); 
   } 
 
    
   // Go to the required location in the phase space, from where the user wants to start. 
   if( !pDataSource->ParseCommandLine( argv, argc ) ) 
   { 
      PrintProgramCall(); 
 
      return( 0 ); 
   } 
 
 
   // Now, get to work. 
   HANDLE heEventStop[MAX_COMPUTATION_THREAD_COUNT]; 
   Dictionary< HANDLE, MHandle > dictThreadHandle; 
 
 
   // Create the thread completion events. 
   for( DWORD dwIndex = 0; dwIndex < MMIN< DWORD, DWORD, DWORD >( dwComputationalThreads, pDataSource->GetRemainingSequencesCount() ); 
dwIndex++ ) 
   { 
      dictThreadHandle.Add( heEventStop[dwIndex] = CreateEvent( NULL, TRUE, TRUE, NULL ), NULL ); 
   }; 
 
 
   wprintf( TEXT("\nLaunching threads:\n") ); 
   MStringEx< char >( "Mean-Median problem computation application\r\n" ).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
   MStringEx< char >( "Copyright (c) 2010 - 2011 Miroslav Bonchev Bonchev - http://www.MBBSoftware.com. All rights reserved.\r\n\r\n" 
).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
   MStringEx< char >( "This software uses the Atomic Memory Model by Miroslav Bonchev Bonchev - 
http://www.mbbsoftware.com/Software/AtomicMemoryModel/Default.aspx\r\n" ).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
   MStringEx< char >( "This software uses the Object Specialization Model by Miroslav Bonchev Bonchev - 
http://www.mbbsoftware.com\r\n" ).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
   MStringEx< char >( "This software uses the Proper Numbers Library by Miroslav Bonchev Bonchev - 
http://www.mbbsoftware.com/Software/ProperNumbersLibrary/Default.aspx\r\n" ).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
   MStringEx< char >( "\r\n" ).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
   MStringEx< char >( MStringEx< char >::FF, "Program started as: %s\r\n", ::GetCommandLineA() ).AddToFile( strTargetPath + 
DATA_FILE_NAME, false ); 
   MStringEx< char >( "\r\n" ).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
   MStringEx< char >( 
"=====================================================================================================================================
=================================================\r\n" ).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
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   MStringEx< char >( "[index startF startS haltF haltS maxF maxS centrePos centreSize transitClocks Kernels] = 
textread('C:\\mm\\fib\\Data.txt','%d %f %s %f %s %f %s %d %d %d %s', 'headerlines', 14 );\r\n" ).AddToFile( strTargetPath + 
DATA_FILE_NAME, false ); 
   MStringEx< char >( 
"=====================================================================================================================================
=================================================\r\n" ).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
   MStringEx< char >( "Index\tStart Number\tStart Number as Rational\t\t\tHalt Value\tHalt Value as Rational\t\t\tMax Value\tMax Value 
as Rational\t\t\tCentre Position\tCentre Size\tTransit Clocks\tKernels\r\n" ).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
   MStringEx< char >( "---------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------\r\n" ).AddToFile( strTargetPath + DATA_FILE_NAME, false ); 
 
 
   DWORD dwSequenceIndex( 0 ); 
 
   while( !dictThreadHandle.IsEmpty() ) 
   { 
      const DWORD dwSignalledIndex( WaitForMultipleObjects( dictThreadHandle.GetCount(), heEventStop, FALSE, 1000 ) ); 
 
      if( IsInRange< DWORD, true, DWORD, true, DWORD >( WAIT_OBJECT_0, dwSignalledIndex, WAIT_OBJECT_0 + dictThreadHandle.GetCount() - 
1 ) ) 
      { 
         const DWORD dwEventIndex( dwSignalledIndex - WAIT_OBJECT_0 ); 
 
         if( !pDataSource->HasMoreToDo() ) 
         { 
            // There is no more data. Just wait for all threads to complete. 
            // Remove the event for the array. 
            dictThreadHandle.Remove( heEventStop[dwEventIndex] ); 
 
            // Re-establish the events array excluding the destroyed event. 
            for( DWORD dwEvent = 0; dwEvent < dictThreadHandle.GetCount(); dwEvent++ ) 
            { 
               heEventStop[dwEvent] = dictThreadHandle.GetByIndex( dwEvent ).GetLabel(); 
            }; 
 
            wprintf( TEXT("Thread [%.2d] finished, %d threads remain to finish.\n"), dictThreadHandle.GetCount(), 
dictThreadHandle.GetCount() ); 
 
            continue; 
         } 
 
 
         ResetEvent( heEventStop[dwEventIndex] ); 
 
         // Get the next number to compute. 
         const MEDIAN_TYPE mtNumber( pDataSource->GetNextNumber() ); 
 
         // Launch the computational thread. 
         dictThreadHandle[heEventStop[dwEventIndex]] = CreateThread( NULL, 0, CalculateHalt, (LPVOID)new CalculationData( 
dwSequenceIndex, mtNumber, strTargetPath, heEventStop[dwEventIndex], dwDeepTrace ), 0, NULL ); 
 
         // Set lower thread priority - make the system usable for other purposes while computing. 
         SetThreadPriority( dictThreadHandle[heEventStop[dwEventIndex]], THREAD_PRIORITY_IDLE ); 
 
         // Display the thread starting information. 
         SYSTEMTIME lt; 
         ::GetLocalTime( &lt ); 
 
         wprintf( TEXT("%.4d-%.2d-%.2d %.2d:%.2d:%.2d Thread[%.2d] = [%.3d] %s\n"), lt.wYear, lt.wMonth, lt.wDay, lt.wHour, 
lt.wMinute, lt.wSecond, dwEventIndex, dwSequenceIndex, (LPCTSTR)mtNumber.Print() ); 
 
         dwSequenceIndex++; 
      } 
   } 
    
 
   wprintf( TEXT("Job done!\n") ); 
 
 
   return( 1 ); 
} 
 



4.4. Matlab Resources

The Mean Medain Map application records the data for each halted sequences in a �le with prede�ned name #de�ne
DATA_FILE_NAME TEXT("\\Data.txt") in folder supplied to the application through a command line switch.
The recorded data is in text format suitable for importing from data processing and visualizing application such
as MATLAB. The script below is a MATLAB script importing the data from the data �le produced by the Mean
Median Map application referred to by the DataFileName variable. Since the data �le is produced by concurrent
threads the order in which they complete and record their information is generally not the same as the order in
which they were spawned. For this reason the script below sorts the data by sequence-index before plotting it. The
other rows sort commands are to arrange the data in ways suitable for di�erent plots which one may desire to plot.
Note that although the Mean Median Map uses arbitrary precision Rational and Quadratic numbers the data �le is
recorded using double precision (64 bit) �oating point numbers so external data processing applications could read
the data. This of course reduces the precision of the recorded information. The human interpretation html �les
however produced with each completed sequence or requested deep log contain the Rational/Quadratic numbers
together with their double representation.

Listing 10. MATLAB script for importing and visualising data from multiple sequences.

c l e a r ;

DataFileName = 'C: \mm\equ_514\Data . t x t ' ;

fo rmat l o n g ;

[ i n d e x s t a r t F s t a r t S ha l tF ha l t S maxF maxS cen t r ePos c e n t r e S i z e t r a n s i t C l o c k s Ke rne l s ] = t e x t r e a d ( DataFileName , '%d %f  %s %f  %s %f
 %s %d %d %d %s ' , ' h e a d e r l i n e s ' , 14 ) ;

data = [ i nde x s t a r t F ha l tF maxF cen t r ePos c e n t r e S i z e t r a n s i t C l o c k s ] ;

i n d e x I n d e x = 1 ;
i n d e x S t a r t = 2 ;
i n d e xHa l t = 3 ;
indexMax = 4 ;
indexCP = 5 ;
indexCS = 6 ;
i nd e xC l o ck = 7 ;

% Sor ted by Index / S t a r t Value .
da ta Index = so r t r ow s ( data , i n d e x I nd e x ) ;
d a t aS t a r t = so r t r ow s ( data , i n d e x S t a r t ) ;
da t aHa l t = so r t r ow s ( data , i n d e xHa l t ) ;
dataMax = so r t r ow s ( data , indexMax ) ;
dataCP = so r t r ow s ( data , indexCP ) ;
dataCS = so r t r ow s ( data , indexCS ) ;
da taC lock = so r t r ow s ( data , i n d e xC l o c k ) ;

s u b p l o t ( 2 , 1 , 1 ) ;
p l o t ( da ta Index ( : , i n d e x I n d e x ) , da ta Index ( : , i n d e xHa l t ) , ' r ' , d a ta Index ( : , i n d e x I nd e x ) , da ta Index ( : , indexMax ) , ' b ' ) ;
s e t ( l egend ( ' Index  vs  Ha l t  Value ' , ' I ndex  vs  Max Value ' ) , ' I n t e r p r e t e r ' , ' none ' )

s u b p l o t ( 2 , 1 , 2 ) ;
p l o t ( da ta Index ( : , i n d e x I n d e x ) , da ta Index ( : , i n d e xC l o ck ) , ' b ' ) ;
s e t ( l egend ( ' Index  vs  I t e r a t i o n s  Count Value ' ) , ' I n t e r p r e t e r ' , ' none ' )

Before terminating work threads record the �nalXn,X
Sort
n ,Mn, En andMn−Mn−1 sequences in Record_Final.html

and Record_Final.html.txt �les in dedicated for each sequence subfolder of the path passed to the Mean Median
Map application at start up. The �rst �le is for human interpretation while the text �le is designed for importing
by data processing and visualizing application, such as MATLAB. If deep logging is requested via the dedicated
command line switch the Mean Median Map application will log the same sequences periodically as they develop
in accordance with the requested recording frequency. The data in the machine interpretation �le is recorded using
64 bit �oating point numbers degrading the arbitrary precision to double which determines precision errors due the
nature and the limited size of the double �oating point numbers. Further the Quadratic class in particular may
incur large conversion errors once its true numbers become too large. Some additional work on the Quadratic class
to improve the conversion form Quadratic to �oating point might be useful. The script below imports sequence
data and displays some useful plots from it.
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Listing 10. MATLAB script for importing and visualising data of a Mean Median Map sequence.

c l e a r ;

DataFileName = 'C: \mm\equ_514\0000000181\ Record_Fina l . html . t x t ' ;

fo rmat l o n g ;
[ i n d e x Xn_time Xn_sort Mn En De l ta ] = t e x t r e a d ( DataFileName , '%d %f  %f  %f  %f  %f ' , ' h e a d e r l i n e s ' , 2 ) ;

data = [ i nde x Xn_time Xn_sort Mn En De l ta ] ;

p l o t ( index , Xn_time , ' g ' , i ndex , Xn_sort , ' r ' , i ndex , Mn, ' b ' ) ;
s e t ( l e gend ( 'Xn ' , 'Xn−Sor t ' , 'Mn ' ) , ' I n t e r p r e t e r ' , ' none ' ) ;
t i t l e ( s p r i n t f ( ' S t a r t i n g  Set  (0 ,  %f ,  1)  − Ha l t  Value  = %f ,  I t e r a t i o n  Count = %d ' , Xn_time ( 1 ) , Mn( s i z e ( Mn, 1 ) ) , s i z e ( Mn, 1

) − 2 ) ) ;

4.5. Other Classes and Resources

There are other generic resources required to compile the Mean Median Map application published in the next
section. These facilities are generic linked list, pair, ASSERTs and other similar. Although not all �les listed below
are necessary for the Mean Median Map there are cross references between them and thus it is advisable to download
and use them all. The classes and other content in the �les is a copyrighted property of the author and are published
under the MIT Open Source Software License Agreement as advised on the top of each �le. The �les listed below
can be downloaded from http://www.MBBSoftware.com/Software/ProperNumbersLibrary/Default.aspx.

1. Common.h - This �le provides some common de�nitions, such as ASSERT and TRACE.

2. Dictionary.h - This �le contains a (simple) dictionary class.

3. Integer.h - This �le contains the Integer class.

4. MAtom.h - This �le contains a Example Implementation of the Atomic Memory Model Phase Two.

5. MHandle.h - This �le contains a system HANDLE wrapper class.

6. MList.h - This �le contains a generic list class.

7. MMemory.h - This �le contains a Example Implementation of the Atomic Memory Model Phase One.

8. MSmartPtr.h - This �le contains a smart pointer implementation class.

9. Pair.h - This �le contains a generic pair class.

10. Rational.h - This �le contains the Rational class.

11. StringEx.h - This �le contains a generic string class.

12. WRID.h - This �le contains a Windows Resource Identi�er wrapper class.
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Part V

Conclusion

Although there is no formalized proof for the main conjecture this project explained the work of the Mean Median
Map. The weak conjecture was proved and by all the known facts this project supports the main conjecture.

This paper also presents the Object Specialization Model, which although not directly related to the Mean Median
Map was extensively used in the software modelling it. The Object Specialization Model helped the rapid develop-
ment of the software and had to be included in this paper as it is not previously known. The required background
work on the Mean Median Map produced a new library for well-de�ned Rational and Integer numbers, which also
utilized the Object Specialization Model in order to achieve the highest known standard.

There are certainly more things that require further attention. On the Mean Median Map the main conjecture
proof need to be formalized. Further the continuity conjecture has not been investigated in this project. On the
software part it is most interesting to resolve problem 27. A more trivial development is adding more mathematical
function to the di�erent numeric classes, such as sin(x), cos(x), log(x), exp(x), hyperbolic functions, etc, as well
as improve the interfacing (print, read).

In closing, the author would like thank all who have in one way or another halped for producing this work and
stress once again that the reason to understand the map and its operation map was the cooperation and equal
treat of Computer Science and Mathematics. This includes but is not limited to the enforced by Computer Science
constructivism.
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